Advertisement

Bus Arrival Time Prediction with LSTM Neural Network

  • Anton AgafonovEmail author
  • Alexander Yumaganov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11554)

Abstract

Arrival time is a key aspect of passenger information systems. Provision of accurate bus arrival information is essential for delivering an attractive service and necessary to passengers for reducing their waiting time and bus stops and choosing alternative routes. Recently, the same information is used in smart-phone trip planners. In this paper, we explore an LSTM neural network model for bus arrival time prediction. We take into account heterogeneous information about the transport situation, directly or indirectly affecting the prediction travel time. We evaluate the proposed models with bus operation data from Samara, Russia. Evaluation results show that the proposed model outperforms some typical prediction algorithms.

Keywords

Arrival time prediction Artificial neural network Long short-term memory Intelligent transportation systems 

Notes

Acknowledgments

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (unique project identifier RFMEFI57518X0177).

References

  1. 1.
    Agafonov, A., Myasnikov, V.: An adaptive algorithm for public transport arrival time prediction based on hierarhical regression, vol. 2015-October, pp. 2776–2781 (2015)Google Scholar
  2. 2.
    Agafonov, A., Sergeev, A., Chernov, A.: Forecasting of the motion parameters of city transport by satellite monitoring data. Comput. Opt. 36(3), 453–458 (2012)Google Scholar
  3. 3.
    Chang, H., Park, D., Lee, S., Lee, H., Baek, S.: Dynamic multi-interval bus travel time prediction using bus transit data. Transportmetrica 6(1), 19–38 (2010)Google Scholar
  4. 4.
    Chen, M., Liu, X., Xia, J., Chien, S.: A dynamic bus-arrival time prediction model based on APC data. Comput.-Aided Civil Infrastruct. Eng. 19(5), 364–376 (2004)Google Scholar
  5. 5.
    Chien, S.J., Ding, Y., Wei, C.: Dynamic bus arrival time prediction with artificial neural networks. J. Transp. Eng. 128(5), 429–438 (2002)Google Scholar
  6. 6.
    Chien, S.J., Kuchipudi, C.: Dynamic travel time prediction with real-time and historic data. J. Transp. Eng. 129(6), 608–616 (2003)Google Scholar
  7. 7.
    Chollet, F., et al.: Keras (2015). https://keras.io
  8. 8.
    Du, S., Li, T., Gong, X., Yu, Z., Huang, Y., Horng, S.J.: A Hybrid Method for Traffic Flow Forecasting Using Multimodal Deep Learning. arXiv e-prints arXiv:1803.02099, March 2018
  9. 9.
    Duan, Y., Lv, Y., Wang, F.Y.: Travel time prediction with LSTM neural network, pp. 1053–1058 (2016)Google Scholar
  10. 10.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)Google Scholar
  11. 11.
    Jeong, R., Rilett, L.: Prediction model of bus arrival time for real-time applications. Transp. Res. Rec. 1927, 195–204 (2005)Google Scholar
  12. 12.
    Kumar, V., Kumar, B., Vanajakshi, L., Subramanian, S.: Comparison of model based and machine learning approaches for bus arrival time prediction, p. 14 (2014)Google Scholar
  13. 13.
    Petersen, N., Rodrigues, F., Pereira, F.: Multi-output bus travel time prediction with convolutional LSTM neural network. Expert Syst. Appl. 120, 426–435 (2019)Google Scholar
  14. 14.
    Smith, B., Williams, B., Oswald, R.: Comparison of parametric and nonparametric models for traffic flow forecasting. Transp. Res. Part C: Emerg. Technol. 10(4), 303–321 (2002)Google Scholar
  15. 15.
    Sun, D., Luo, H., Fu, L., Liu, W., Liao, X., Zhao, M.: Predicting bus arrival time on the basis of global positioning system data. Transp. Res. Rec. 2034, 62–72 (2007)Google Scholar
  16. 16.
    Van Hinsbergen, C., Van Lint, J., Van Zuylen, H.: Bayesian committee of neural networks to predict travel times with confidence intervals. Transp. Res. Part C: Emerg. Technol. 17(5), 498–509 (2009)Google Scholar
  17. 17.
    Xu, H., Ying, J.: Bus arrival time prediction with real-time and historic data. Cluster Comput. 20(4), 3099–3106 (2017)Google Scholar
  18. 18.
    Yang, M., Chen, C., Wang, L., Yan, X., Zhou, L.: Bus arrival time prediction using support vector machine with genetic algorithm. Neural Netw. World 26(3), 205–217 (2016)Google Scholar
  19. 19.
    Yu, B., Yang, Z.Z., Chen, K., Yu, B.: Hybrid model for prediction of bus arrival times at next station. J. Adv. Transp. 44(3), 193–204 (2010)Google Scholar
  20. 20.
    Yu, B., Yang, Z.Z., Yao, B.Z.: Bus arrival time prediction using support vector machines. J. Intell. Transp. Syst.: Technol. Plan. Oper. 10(4), 151–158 (2006)Google Scholar
  21. 21.
    Zhu, T., Ma, F., Ma, T., Li, C.: The prediction of bus arrival time using global positioning system data and dynamic traffic information (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Samara National Research UniversitySamaraRussia

Personalised recommendations