Skip to main content

An Embarrassingly Parallel Method for Large-Scale Stochastic Programs

  • Chapter
  • First Online:
Large Scale Optimization in Supply Chains and Smart Manufacturing

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 149))

  • 1047 Accesses

Abstract

Stochastic programming offers a flexible modeling framework for optimal decision-making problems under uncertainty. Most practical stochastic programming instances, however, quickly grow too large to solve on a single computer, especially due to memory limitations. This chapter reviews recent developments in solving large-scale stochastic programs, possibly with multiple stages and mixed-integer decision variables, and focuses on a scenario decomposition-based bounding method, which is broadly applicable as it does not rely on special problem structure and stands out as a natural candidate for implementation in a distributed fashion. In addition to discussing the method theoretically, this chapter examines issues related to a distributed implementation of the method on a modern computing grid. Using large-scale instances from the literature, this chapter demonstrates the potential of the method in obtaining high quality solutions to very large-scale stochastic programming instances within a reasonable time frame.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, S.: A scenario decomposition algorithm for 0–1 stochastic programs. Operations Research Letters 41(6), 565–569 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Ahmed, S., Sahinidis, N.V.: An approximation scheme for stochastic integer programs arising in capacity expansion. Operations Research 51(3), 461–471 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Analytic Solver Optimization: (2018). Frontline Systems Inc. Available at https://www.solver.com/premium-solver-platform

  4. Bakır, I., Boland, N., Dandurand, B., Erera, A.: Scenario set partition dual bounds for multistage stochastic programming: A hierarchy of bounds and a partition sampling approach (2016). Accessed at Optimization Online on December 1, 2018

    Google Scholar 

  5. Batun, S., Denton, B.T., Huschka, T.R., Schaefer, A.J.: Operating room pooling and parallel surgery processing under uncertainty. INFORMS Journal on Computing 23(2), 220–237 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley (2006)

    Google Scholar 

  7. Birge, J.R.: The value of the stochastic solution in stochastic linear programs with fixed recourse. Mathematical Programming 24(1), 314–325 (1982)

    MathSciNet  MATH  Google Scholar 

  8. Birge, J.R.: Decomposition and partitioning methods for multistage stochastic linear programs. Operations Research 33(5), 989–1007 (1985)

    MathSciNet  MATH  Google Scholar 

  9. Birge, J.R., Donohue, C.J., Holmes, D.F., Svintsiski, O.G.: A parallel implementation of the nested decomposition algorithm for multistage stochastic linear programs. Mathematical Programming 75(2), 327–352 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Birge, J.R., Louveaux, F.V.: A multicut algorithm for two-stage stochastic linear programs. European Journal of Operations Research 34, 384–392 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming, 2nd edn. Springer, New York (2011)

    MATH  Google Scholar 

  12. Birge, J.R., Qi, L.: Computing block-angular Karmarkar projections with applications to stochastic programming. Management Science 34, 1472–1479 (1988)

    MathSciNet  MATH  Google Scholar 

  13. Blomvall, J.: A multistage stochastic programming algorithm suitable for parallel computing. Parallel Computing 29(4), 431–445 (2003)

    MathSciNet  Google Scholar 

  14. COIN-OR Stochastic Modeling Interface: Ver. 0.96 (2018). Available at https://projects.coin-or.org/Smi

  15. Crainic, T.G., Hewitt, M., Rei, W.: Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design. Computers & Operations Research 43, 90–99 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Dantzig, G.B., Thapa, M.N.: Linear Programming. Vol 1–2, Springer (2003)

    Google Scholar 

  17. Deng, Y., Ahmed, S., Lee, J., Shen, S.: Scenario grouping and decomposition algorithms for chance-constrained programs (2018). Accessed at Optimization Online on December 1, 2018

    Google Scholar 

  18. Denton, B.T., Miller, A.J., Balasubramanian, H.J., Huschka, T.R.: Optimal allocation of surgery blocks to operating rooms under uncertainty. Operations Research 58(4), 802–816 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Erdogan, S.A., Denton, B.T.: Dynamic appointment scheduling with uncertain demand. INFORMS Journal on Computing 25(1), 116–132 (2013)

    MathSciNet  Google Scholar 

  20. FortSP: A stochastic programming solver. Version 1.2 (2018). OptiRisk Systems. Available at https://optirisk-systems.com/products/solver-systems/fortsp

  21. Fragniére, E., Gondzio, J., Vial, J.P.: Building and solving large-scale stochastic programs on an affordable distributed computing system. Annals of Operations Research 99(1–4), 167–187 (2000)

    MathSciNet  MATH  Google Scholar 

  22. GAMS: Ver. 25.1.3 (2018). GAMS Development Corp. Available at http://www.gams.com/

  23. Gondzio, J., Grothey, A.: Solving nonlinear financial planning problems with 109 decision variables on massively parallel architectures. In: M. Constantino, C. Brebbia (eds.) Computational Finance and its Applications II, pp. 95–108. WIT Press, Southampton, UK (2006)

    Google Scholar 

  24. Gondzio, J., Kouwenberg, R.: High-performance computing for asset-liability management. Operations Research 49(6), 879–891 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Guan, Y., Ahmed, S., Nemhauser, G.L.: Cutting planes for multistage stochastic integer programs. Operations Research 57(2), 287–298 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Kall, P., Wallace, S.W.: Stochastic Programming. Wiley (1995)

    Google Scholar 

  27. Linderoth, J.T., Wright, S.J.: Decomposition algorithms for stochastic programming on a computational grid. Computational Optimization and Applications 24(2–3), 207–250 (2003)

    MathSciNet  MATH  Google Scholar 

  28. LINDO: Ver. 18.0 (2018). LINDO Systems Inc.. Available at http://www.lindo.com/

  29. Lubin, M., Martin, R.K., Petra, C., Sandıkçı, B.: On parallelizing dual decomposition in stochastic integer programming. Operations Research Letters 41(3), 252–258 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Madansky, A.: Inequalities for stochastic linear programming problems. Management Science 6(2), 197–204 (1960)

    MathSciNet  MATH  Google Scholar 

  31. Maggioni, F., Allevi, E., Bertocchi, M.: Monotonic bounds in multistage mixed-integer stochastic programming. Computational Management Science pp. 1–35 (2016)

    Google Scholar 

  32. Maggioni, F., Pflug, G.: Bounds and approximations for multistage stochastic programs. SIAM Journal on Optimization 26(1), 831–855 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Mahmutoğulları, A.I., Çavuş, Ö., Aktürk, M.S.: Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR. European Journal of Operational Research 266(2), 595–608 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Morton, D.P.: An enhanced decomposition algorithm for multistage stochastic hydroelectric scheduling. Annals of Operations Research 64, 211–235 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Mulvey, J.M., Vladimirou, H.: Applying the progressive hedging algorithm to stochastic generalized networks. Annals of Operations Research 31(1), 399–424 (1991)

    MathSciNet  MATH  Google Scholar 

  36. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley (1999)

    Google Scholar 

  37. NEOS Stochastic Programming Solvers: (2018). Available at https://neos-server.org/neos/solvers/

  38. Özaltın, O.Y., Prokopyev, O.A., Schaefer, A.J., Roberts, M.S.: Optimizing the societal benefits of the annual influenza vaccine: A stochastic programming approach. Operations Research 59(5), 1131–1143 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Prékopa, A.: Stochastic Programming. Kuwer Academic Publishers, Norwell, MA (1995)

    MATH  Google Scholar 

  40. Rardin, R.L.: Optimization in Operations Research. Prentice Hall (1997)

    Google Scholar 

  41. Rockafellar, R.T., Wets, R.J.B.: Scenarios and policy aggregation in optimization under uncertainty. Mathematics of Operations Research 16(1), 119–147 (1991)

    MathSciNet  MATH  Google Scholar 

  42. Ruszczyński, A.: A regularized decomposition for minimizing a sum of polyhedral functions. Mathematical Programming 35, 309–333 (1986)

    MathSciNet  MATH  Google Scholar 

  43. Ruszczyński, A.: Parallel decomposition of multistage stochastic programming problems. Mathematical Programming 58(1–3), 201–228 (1993)

    MathSciNet  MATH  Google Scholar 

  44. Ruszczyński, A., (eds.), A.S.: Handbooks in Operations Research and Management Science: Stochastic Programming. Vol. 10, Elsevier, North-Holland (2003)

    Google Scholar 

  45. Ryan, K., Ahmed, S., Dey, S., Rajan, D.: Optimization driven scenario grouping. Working paper (2016). Accessed at Optimization Online on November 01, 2016

    Google Scholar 

  46. Sandıkçı, B., Kong, N., Schaefer, A.J.: A hierarchy of bounds for stochastic mixed-integer programs. Mathematical Programming 138(1), 253–272 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Sandıkçı, B., Özaltın: A scalable bounding method for multi-stage stochastic programs. SIAM Journal on Optimization 27(3), 1772–1800 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Santoso, T., Ahmed, S., Goetschalckx, M., Shapiro, A.: A stochastic programming approach for supply chain network design under uncertainty. European Journal of Operations Research 167(1), 96–115 (2005)

    MathSciNet  MATH  Google Scholar 

  49. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1998)

    Google Scholar 

  50. Sen, S., Yu, L., Genc, T.: A stochastic programming approach to power portfolio optimization. Operations Research 54(1), 55–72 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: modeling and Theory. SIAM-Society for Industrial and Applied Mathematics (2009)

    Google Scholar 

  52. van Slyke, R., Wets, R.J.B.: L-shaped linear programs with application to optimal control and stochastic programming. SIAM Journal on Applied Mathematics 17(4), 638–663 (1969)

    MathSciNet  MATH  Google Scholar 

  53. Song, Y., Luedtke, J.: An adaptive partition-based approach for solving two-stage stochastic programs with fixed recourse. SIAM Journal on Optimization 25(3), 1344–1367 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Song, Y., Luedtke, J., James, R., Küçükyavuz, S.: Chance-constrained binary packing problems. INFORMS Journal on Computing 26(4), 735–747 (2014)

    MathSciNet  MATH  Google Scholar 

  55. Vanderbei, R.J.: Linear Programming: Foundations and Extensions. Springer (2007)

    Google Scholar 

  56. Wallace, S.W., Ziemba, W.T.: Applications of Stochastic Programming. SIAM-Society for Industrial and Applied Mathematics (2005)

    Google Scholar 

  57. Wets, R.J.B.: Solving stochastic programs with simple recourse. Stochastics 10, 219–242 (1983)

    MathSciNet  MATH  Google Scholar 

  58. Winston, W.L., Venkataramanan, M.: Introduction to Mathematical Programming: Applications and Algorithms, 4th edn. Thomson Learning (2002)

    Google Scholar 

  59. Zenarosa, G.L., Prokopyev, O.A., Schaefer, A.J.: Scenario-tree decomposition: Bounds for multistage stochastic mixed-integer programs (2014). Accessed at Optimization Online on December 01, 2014

    Google Scholar 

Download references

Acknowledgement

Completed in part with resources provided by the University of Chicago Research Computing Center (RCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burhaneddin Sandıkçı .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sandıkçı, B., Özaltın, O.Y. (2019). An Embarrassingly Parallel Method for Large-Scale Stochastic Programs. In: Velásquez-Bermúdez, J., Khakifirooz, M., Fathi, M. (eds) Large Scale Optimization in Supply Chains and Smart Manufacturing. Springer Optimization and Its Applications, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-030-22788-3_5

Download citation

Publish with us

Policies and ethics