Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 232 Accesses

Abstract

The best way to study the supermassive black holes (SMBHs) is to investigate the matter in the AGN environment. The radiation, emitted as a result of the accretion, interacts with and ionizes the surrounding materials, the spectral signatures of which can be seen in the observed optical/UV/X-ray spectra of AGNs. With the advent of observational techniques from radio to the hard X-ray bands, the electromagnetic properties of AGNs have been known in much details over the period of a few decades. One of the most important achievements from multi-wavelength observations of AGNs is the identification of various components: the accretion disk (AD) surrounding the SMBH, the emission regions where the broad and narrow lines originate, the absorption regions, the collimated and dispersed outflows,the dusty torus, and the hot corona where hard X-ray emission comes from. This thesis deals with the two major components; the absorption regions and the emission regions. A brief overview of the AGN properties and a short review of the relevant literature is given in this Chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lynden-Bell D (1969) Nature 223:690

    Article  ADS  Google Scholar 

  2. Shakura NI, Sunyaev RA (1973) A&A 24:337

    ADS  Google Scholar 

  3. Hasinger G (2001) Quasars, AGNs and related research across 2000. In: Setti G, Swings J-P (eds) Conference on the Occasion of L. Woltjer’s 70th Birthday, p 14

    Google Scholar 

  4. Fath EA (1909) Lick Obs Bull 5:71

    Article  ADS  Google Scholar 

  5. Hubble EP (1926) ApJ, 64

    Google Scholar 

  6. Seyfert CK (1943) ApJ 97:28

    Article  ADS  Google Scholar 

  7. Ho LC, Filippenko AV, Sargent WLW (1997) ApJS 112:315

    Article  ADS  Google Scholar 

  8. Fanaroff BL, Riley JM (1974) MNRAS 167:31P

    Article  ADS  Google Scholar 

  9. Antonucci R (1993) ARA&A 31:473

    Article  ADS  Google Scholar 

  10. Urry CM, Padovani P (1995) PASP 107:803

    Article  ADS  Google Scholar 

  11. Antonucci RRJ (1984) ApJ 278:499

    Article  ADS  Google Scholar 

  12. Done C, Krolik JH (1996) ApJ 463:144

    Article  ADS  Google Scholar 

  13. Collin S, Kawaguchi T, Peterson BM, Vestergaard M (2006) A&A 456:75

    Article  ADS  Google Scholar 

  14. Radomski JT et al (2008) ApJ 681:141

    Article  ADS  Google Scholar 

  15. Burtscher L et al (2013) A&A 558:A149

    Article  ADS  Google Scholar 

  16. García-Burillo S et al (2016) ApJ 823:L12

    Article  ADS  Google Scholar 

  17. Gallimore JF et al (2016) ApJ 829:L7

    Article  ADS  Google Scholar 

  18. Malkan MA, Gorjian V, Tam R (1998) ApJS 117:25

    Article  ADS  Google Scholar 

  19. Blandford RD, Znajek RL (1977) MNRAS 179:433

    Article  ADS  Google Scholar 

  20. Rees MJ, Begelman MC, Blandford RD, Phinney ES (1982) Nature 295:17

    Article  ADS  Google Scholar 

  21. Narayan R, Yi I (1995) ApJ 444:231

    Article  ADS  Google Scholar 

  22. Zoghbi A, Fabian AC, Reynolds CS, Cackett EM (2012) MNRAS 422:129

    Article  ADS  Google Scholar 

  23. Nandra K, Pounds KA (1994) MNRAS 268:405

    Article  ADS  Google Scholar 

  24. Pounds KA, Nandra K, Stewart GC, George IM, Fabian AC (1990) Nature 344:132

    Article  ADS  Google Scholar 

  25. Arav N, Brotherton MS, Becker RH, Gregg MD, White RL, Price T, Hack W (2001) ApJ 546:140

    Article  ADS  Google Scholar 

  26. Weymann RJ (1995) In: Meylan G (ed) QSO absorption lines, p 213

    Google Scholar 

  27. Crenshaw DM, Kraemer SB, Boggess A, Maran SP, Mushotzky RF, Wu C (1999) ApJ 516:750

    Article  ADS  Google Scholar 

  28. Kaspi S et al (2001) ApJ 554:216

    Article  ADS  Google Scholar 

  29. Behar E, Rasmussen AP, Blustin AJ, Sako M, Kahn SM, Kaastra JS, Branduardi-Raymont G, Steenbrugge KC (2003) ApJ 598:232

    Article  ADS  Google Scholar 

  30. Steenbrugge KC, Kaastra JS, de Vries CP, Edelson R (2003) A&A 402:477

    Article  ADS  Google Scholar 

  31. Turner AK, Fabian AC, Lee JC, Vaughan S (2004) MNRAS 353:319

    Article  ADS  Google Scholar 

  32. Costantini E et al (2007) A&A 461:121

    Article  ADS  Google Scholar 

  33. Chartas G, Brandt WN, Gallagher SC (2003) ApJ 595:85

    Article  ADS  Google Scholar 

  34. Markowitz A, Reeves JN, Braito V (2006) ApJ 646:783

    Article  ADS  Google Scholar 

  35. Dauser T et al (2012) MNRAS 422:1914

    Article  ADS  Google Scholar 

  36. Tombesi F, Cappi M, Reeves JN, Nemmen RS, Braito V, Gaspari M, Reynolds CS (2013) MNRAS 430:1102

    Article  ADS  Google Scholar 

  37. Laha S, Guainazzi M, Chakravorty S, Dewangan GC, Kembhavi AK (2016) MNRAS 457:3896

    Article  ADS  Google Scholar 

  38. Kraemer SB, Tombesi F, Bottorff MC (2018) ApJ 852:35

    Article  ADS  Google Scholar 

  39. Brotherton MS, Wills BJ, Francis PJ, Steidel CC (1994) ApJ 430:495

    Article  ADS  Google Scholar 

  40. Mason KO, Puchnarewicz EM, Jones LR (1996) MNRAS 283:L26

    Article  ADS  Google Scholar 

  41. Crenshaw DM, Kraemer SB (2007) ApJ 659:250

    Article  ADS  Google Scholar 

  42. Hu C, Wang J-M, Ho LC, Chen Y-M, Bian W-H, Xue S-J (2008a) ApJ 683:L115

    Article  ADS  Google Scholar 

  43. Hu C, Wang J-M, Ho LC, Chen Y-M, Zhang H-T, Bian W-H, Xue S-J (2008b) ApJ 687:78

    Article  ADS  Google Scholar 

  44. Zhu L, Zhang SN, Tang S (2009) ApJ 700:1173

    Article  ADS  Google Scholar 

  45. Li Z et al (2015) ApJ 812:99

    Article  ADS  Google Scholar 

  46. Halpern JP (1984) ApJ 281:90

    Article  ADS  Google Scholar 

  47. Collinge MJ et al (2001) ApJ 557:2

    Article  ADS  Google Scholar 

  48. Kaastra JS, Steenbrugge KC, Raassen AJJ, van der Meer RLJ, Brinkman AC, Liedahl DA, Behar E, de Rosa A (2002) A&A 386:427

    Article  ADS  Google Scholar 

  49. Netzer H et al (2003) ApJ 599:933

    Article  ADS  Google Scholar 

  50. Krongold Y, Nicastro F, Brickhouse NS, Elvis M, Liedahl DA, Mathur S (2003) ApJ 597:832

    Article  ADS  Google Scholar 

  51. Yaqoob T, McKernan B, Kraemer SB, Crenshaw DM, Gabel JR, George IM, Turner TJ (2003) ApJ 582:105

    Article  ADS  Google Scholar 

  52. Blustin AJ et al (2003) A&A 403:481

    Article  ADS  Google Scholar 

  53. Różańska A, Czerny B, Siemiginowska A, Dumont A-M, Kawaguchi T (2004) ApJ 600:96

    Article  ADS  Google Scholar 

  54. Steenbrugge KC et al (2005) A&A 434:569

    Article  ADS  Google Scholar 

  55. Winter LM, Mushotzky R (2010) ApJ 719:737

    Article  ADS  Google Scholar 

  56. Winter LM, Veilleux S, McKernan B, Kallman TR (2012) ApJ 745:107

    Article  ADS  Google Scholar 

  57. Laha S, Guainazzi M, Dewangan GC, Chakravorty S, Kembhavi AK (2014) MNRAS 441:2613

    Article  ADS  Google Scholar 

  58. Holczer T, Behar E, Kaspi S (2007) ApJ 663:799

    Article  ADS  Google Scholar 

  59. Behar E (2009) ApJ 703:1346

    Article  ADS  Google Scholar 

  60. Detmers RG et al (2011) A&A 534:A38

    Article  ADS  Google Scholar 

  61. Stern J, Behar E, Laor A, Baskin A, Holczer T (2014) MNRAS 445:3011

    Article  ADS  Google Scholar 

  62. Adhikari TP, Różańska A, Sobolewska M, Czerny B (2016) In: Różańska A, Bejger M (eds) 37th meeting of the polish astronomical society, vol 3, pp 239–242

    Google Scholar 

  63. Kaspi S, Smith PS, Netzer H, Maoz D, Jannuzi BT, Giveon U (2000) ApJ 533:631

    Article  ADS  Google Scholar 

  64. Peterson BM et al (2000) ApJ 542:161

    Article  ADS  Google Scholar 

  65. Peterson BM et al (2013) ApJ 779:109

    Article  ADS  Google Scholar 

  66. Netzer H, Laor A (1993) ApJ 404:L51

    Article  ADS  Google Scholar 

  67. Crenshaw DM, Kraemer SB, Schmitt HR, Kaastra JS, Arav N, Gabel JR, Korista KT (2009) ApJ 698:281

    Article  ADS  Google Scholar 

  68. Krolik JH, Kriss GA (1995) ApJ 447:512

    Article  ADS  Google Scholar 

  69. Nicastro F, Fiore F, Perola GC, Elvis M (1999) ApJ 512:184

    Article  ADS  Google Scholar 

  70. Kaastra JS et al (2012) A&A 539:A117

    Article  ADS  Google Scholar 

  71. Arav N et al (2012) A&A 544:A33

    Article  ADS  Google Scholar 

  72. Korista KT, Bautista MA, Arav N, Moe M, Costantini E, Benn C (2008) ApJ 688:108

    Article  ADS  Google Scholar 

  73. Moe M, Arav N, Bautista MA, Korista KT (2009) ApJ 706:525

    Article  ADS  Google Scholar 

  74. Bautista MA, Dunn JP, Arav N, Korista KT, Moe M, Benn C (2010) ApJ 713:25

    Article  ADS  Google Scholar 

  75. Kaastra JS et al (2004) A&A 428:57

    Article  ADS  Google Scholar 

  76. Bruhweiler F, Verner E (2008) ApJ 675:83

    Article  ADS  Google Scholar 

  77. Hryniewicz K, Czerny B, Pych W, Udalski A, Krupa M, Świȩtoń A, Kaluzny J (2014) A&A 562:A34

    Article  ADS  Google Scholar 

  78. Modzelewska J et al (2014) A&A 570:A53

    Article  ADS  Google Scholar 

  79. Sredzinska J et al (2016) ArXiv e-prints

    Google Scholar 

  80. Leighly KM (2004) ApJ 611:125

    Article  ADS  Google Scholar 

  81. Różańska A, Nikołajuk M, Czerny B, Dobrzycki A, Hryniewicz K, Bechtold J, Ebeling H (2014) New A 28:70

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tek Prasad Adhikari .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adhikari, T.P. (2019). Introduction. In: Photoionization Modelling as a Density Diagnostic of Line Emitting/Absorbing Regions in Active Galactic Nuclei. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-22737-1_1

Download citation

Publish with us

Policies and ethics