Skip to main content

Manipulating Two-Dimensional Animations by Dynamical Distance Geometry

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 838))

Abstract

The dynamical Distance Geometry Problem (dynDGP) was recently introduced to tackle the problem of manipulating existing animations by modifying and/or adding ad-hoc distance constraints in a distance-based representation of the motion. Although the general problem is NP-hard, satisfactory results have been obtained for the dynDGP by employing local optimization methods, where the original animations, the ones to be manipulated, are given as starting points. New animations are presented in this short paper and, differently from previous publications where only artificial instances were considered, one new animation is extracted from a video clip, depicting animated geometrical objects, that was previously used in a psychological study. The manipulation by distance constraints of such an animation allows to modify the perception of the “actions” performed by the objects of the initial animation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.youtube.com/watch?v=sx7lBzHH7c8.

  2. 2.

    https://www.antoniomucherino.it/en/animations.php.

References

  1. Glunt, W., Hayden, T.L., Raydan, M.: Molecular conformations from distance matrices. J. Comput. Chem. 14(1), 114–120 (1993)

    Article  Google Scholar 

  2. Heider, F., Simmel, M.: An experimental study of apparent behavior. Am. J. Psychol. 57(2), 243–259 (1944)

    Article  Google Scholar 

  3. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)

    Article  MathSciNet  Google Scholar 

  4. Mucherino, A.: On the Discretization of Distance Geometry: Theory, Algorithms and Applications, HDR Monograph, University of Rennes 1. INRIA Hal archive id: tel-01846262, 17 July 2018

    Google Scholar 

  5. Mucherino, A., Gonçalves, D.S.: An Approach to Dynamical Distance Geometry. Lecture Notes in Computer Science, vol. 10589; Nielsen, F., Barbaresco, F. (eds.): Proceedings of Geometric Science of Information (GSI17), Paris, France, pp. 821–829 (2017)

    Google Scholar 

  6. Mucherino, A., Gonçalves, D.S., Bernardin, A., Hoyet, L., Multon, F.: A distance-based approach for human posture simulations. In: IEEE Conference Proceedings, Federated Conference on Computer Science and Information Systems (FedCSIS17), Workshop on Computational Optimization (WCO17), Prague, Czech Republic, pp. 441–444 (2017)

    Google Scholar 

  7. Mucherino, A., Omer, J., Hoyet, L., Robuffo Giordano, P., Multon, F.: An application-based characterization of dynamical distance geometry problems. Optim. Lett. (2019) (Springer) (to appear)

    Google Scholar 

  8. Tabaghi, P., Dokmanić, I., Vetterli, M.: Kinetic Euclidean Distance Matrices, 13 pp. (2018). arXiv preprint arXiv:1811.03193

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Mucherino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mucherino, A. (2020). Manipulating Two-Dimensional Animations by Dynamical Distance Geometry. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. Studies in Computational Intelligence, vol 838. Springer, Cham. https://doi.org/10.1007/978-3-030-22723-4_10

Download citation

Publish with us

Policies and ethics