Skip to main content

Microwaveguides. Magnetic Moment Transport

  • Chapter
  • First Online:
Waveguide Propagation of Nonlinear Waves

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 109))

  • 640 Accesses

Abstract

The quantum theory of a multielectron system is based on the joint symmetry group of permutations and space symmetry. In the pioneering papers of Heisenberg (Zs Phys 49:619–636, 1928) [1], it was established, that the Weiss model of ferromagnetism is explained by electric interaction, whose origin may be understood on the basis of the quantum theory of the exchange interaction for the Heitler–London hydrogen molecule. It is naturally combined with Hartree–Fock theory Fock (Zs Phys 61:126, 1930) [2] and its further self-consistent one-particle generalizations, which provide better evaluations of the exchange integral. For the properties of the spectrum, see Popov and Melikhov (J Phys Conf Ser 541:012099/1-4, 2014) [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Heisenberg: Zur Theorie des Ferromagnetismus. Zs. Phys. 49, 619–636 (1928); Zur Quantentheorie des Ferromagnetismus. Probleme der Modernen Physik, A. Sommerfeld Festschrift. Leipzig, 1928, 114–122; Zur Theorie des Magnetpstriktin und der Magnetisierungkurve. Zs. Phys. 69, 287–297 (1931)

    Google Scholar 

  2. V. Fock: An Approximate Method for Solving the Quantum Many-Body Problem. (Reported at the Session of the Russian Phys.-Chem. Soc. on 17 December 1929). Zs. Phys. 61, 126 (1930); TOI 5(51), 1 (1931); UFN 93(2), 342 (1967)

    Google Scholar 

  3. I.Y. Popov, I.F. Melikhov, The discrete spectrum of the multiparticle Hamiltonian in the framework of the Hartree–Fock approximation. J. Phys. Conf. Ser. 541, 012099/1-4 (2014). https://doi.org/10.1088/1742-6596/541/1/012099. IOP Publishing, Bristol

    Article  Google Scholar 

  4. W. Heitler, Stäorungsenergie und Austausch beim Mehrkäorperproblem. Zs. Phys. 46, 47 (1927)

    Article  ADS  Google Scholar 

  5. W. Heitler, Zur Gruppentheorie der homopolaren chemischen Bindung. Zs. Phys. 47, 835 (1928)

    Article  ADS  Google Scholar 

  6. E. Wigner, Group Theory (Academic Press, New York, London, 1959)

    MATH  Google Scholar 

  7. V. Fock: Zs. Phys. 81, 195 (1933); Application of Two-Electron Functions in the Theory of Chemical Bonds. DAN 73(4), 735 (1950)

    Google Scholar 

  8. V.A. Fock: On the Schrödinger equation for the helium atom. Izv. AN SSSR Serija Fiz. 18(2), 161–172 (1954); Det Kongelige Norske Videnssabers selskabs forhandlinger. 31(22–23), 138–152 (1958)

    Google Scholar 

  9. L.D. Landau, E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion 8(153), 101–114 (1935)

    MATH  Google Scholar 

  10. B. Guo: Landau–Lifshitz Equations. Frontiers of Research with the Chinese Academy of Sciences, vol. 1 (2008)

    Google Scholar 

  11. I. Dzyaloshinskii, A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)

    Google Scholar 

  12. A. Zhukov, V. Zhukova, Magnetic Properties and Applications of Ferromagnetic Microwires with Amorphous and Nanocrystalline Structure, Nanotechnology Science and Technology Series (Nova Science Publishers, New York, 2009)

    Google Scholar 

  13. K. Porsezian: On the discrete and continuum integrable heisenberg spin chain models, in Future Directions of Nonlinear Dynamics in Physical and Biological Systems, ed. P.L. Christiansen, J.C. Eilbeck, R.D. Parmentier. NATO ASI Series (Series B: Physics), vol. 312 (Springer, Boston, MA, 1993)

    Google Scholar 

  14. M. Vázquez, Magnetic Nano- and Microwires: Design, Synthesis (Properties and Applications. Woodhead Publishing Series in Electronic and Optical Materials, Elsevier Science, 2015)

    Google Scholar 

  15. M. Lakshmanan, The fascinating world of the Landau-Lifshitz-Gilbert equation: an overview. Phil. Trans. R. Soc. A 369, 1280–1300 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. T.L. Gilbert, A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40(6), 3443–3449 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Lakshmanan, K. Nakumara, Landau-Lifshitz equation of ferromagnetism: Exact treatment of the Gilbert damping. Phys. Rev. Lett. 53, 2497–2499 (1984)

    Article  ADS  Google Scholar 

  18. S. Kim, K. Ueda, G. Go, P.-H. Jang, K.-J. Lee, A. Belabbes, A. Manchon, M. Suzuki, Y. Kotani, T. Nakamura, K. Nakamura, T. Koyama, D. Chiba, K.T. Yamada, D.-H. Kim, T. Moriyama, Ono: Correlation of the Dzyaloshinskii–Moriya interaction with Heisenberg exchange and orbital asphericity. Nat. Commun. 9, 1648 (2018)

    Article  ADS  Google Scholar 

  19. A.N. Bogdanov, D.A. Yablonsky, Zh. Eksp. Teor. Fiz. 95, 178 (1989)

    Google Scholar 

  20. S. Muehlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Boeni, Science 323, 915 (2009)

    Article  ADS  Google Scholar 

  21. V.A. lgnatchenko, P.D. Kim, Domain-wall resonance in thin magnetic films. Zh. Exp. Teor. Fiz. 80, 2283 (1981)

    Google Scholar 

  22. D.C. Jiles, Introduction to Magnetism and Magnetic Materials, 2nd edn. (Taylor and Francis, UK, 1998)

    Google Scholar 

  23. I.R. Walker: Bell Telephone Laboratories Memorandum, 1956 (unpublished). An account of this work can be found in J.F. Dillon, Jr., Magnetism. Academic Press Inc., New York (1963)

    Google Scholar 

  24. B. Hu, X.R. Wang, Instability of walker propagating domain wall in magnetic nanowires. PRL 111, 027205 (2013)

    Article  ADS  Google Scholar 

  25. X.S. Wang et al., Phys. Rev. Lett. 109, 167209 (2012)

    Article  ADS  Google Scholar 

  26. https://wikimedia.org/api/rest_v1/media/math/render/svg/20d9588835e5d0c4211ce099d3be72fa6538e063

  27. D. Henry, Geometric Theory of Semilinear Parabolic Equations (Springer, Berlin, 1981)

    Book  Google Scholar 

  28. D. Bouzidi, H. Suhl, Phys. Rev. Lett. 65, 2587 (1990)

    Article  ADS  Google Scholar 

  29. T. Kato: Perturbation Theory for Linear Operators. Reprint of the 1980 edition, Springer, 1980

    Google Scholar 

  30. X.S. Wang, X.R. Wang, Phys. Rev. B 90, 184415 (2014)

    Article  ADS  Google Scholar 

  31. M. Yan et al., Appl. Phys. Lett. 99, 122505 (2011)

    Article  ADS  Google Scholar 

  32. S.F. Hafstein, C.M. Kellett, H. Li, Computing continuous and piecewise affine Lyapunov functions for nonlinear systems. J. Comput. Dyn. 2(2), 227–246 (2015)

    Article  MathSciNet  Google Scholar 

  33. S.F. Hafstein: Computation of Lyapunov functions for switched systems using linear programming. Workshop: Efficient control of magnetization switching, 25 July 2018, University of Iceland

    Google Scholar 

  34. D.A. Allwood, R.P. Cowburn, Magnetic Domain Wall Logic (Wiley-VCH Verlag Gmb. Co, KGaA, 2010)

    Book  Google Scholar 

  35. J. Olivera, M. Gonzalez, J. Fuente, R. Varga, A. Zhukov, J.J. Anaya, An embedded stress sensor for concrete SHM based on amorphous ferromagnetic microwires. 14(19963–78), 11 (2014)

    Google Scholar 

  36. R. Varga, A. Zhukov, V. Zhukova, J.M. Blanco, J. Gonzalez, Supersonic domain wall in magnetic microwires. Phys. Rev. B 76, 132406 (2007)

    Article  ADS  Google Scholar 

  37. M. Vazquez, D.X. Chen, The magnetization reversal process in amorphous wires. IEEE Transactions on Magnetics 31(2), 1229–1238 (1995)

    Article  ADS  Google Scholar 

  38. H. Chiriac, T.-A. Ovari, A. Zhukov, Magnetoelastic anisotropy of amophous microwires. Journal of Magnetism and Magnetic Materials 254–255, 469–471 (2003)

    Article  ADS  Google Scholar 

  39. A.S. Antonov, V.T. Borisov, O.V. Borisov, V.A. Pozdnyakov, A.F. Prokoshin, N.A. Usov, Residual quenching stresses in amorphous ferromagnetic wires produced by an in-rotating-water spinning process. Journal of Physics D: Applied Physics 32(15), 1788 (1999)

    Article  ADS  Google Scholar 

  40. S.A. Gudoshnikov, YuB Grebenshchikov, B.Ya. Ljubimov, P.S. Palvanov, N.A. Usov, M. Ipatov, A. Zhukov, J. Gonzalez, Ground state magnetization distribution and characteristic width of head to head domain wall in Fe-rich amorphous microwire. Phys. Status Solidi A 206, 613 (2009)

    Article  ADS  Google Scholar 

  41. A.M. Severino, C. Gómez-Polo, P. Marin, M. Vázquez, Influence of the sample length on the switching process of magnetostrictive amorphous wire. J. Magn. Magn. Mater. 103(1), 117–125 (1992)

    Article  ADS  Google Scholar 

  42. I. Baraban, M. Gorshenkov, N. Andreev, K. Chichay, V. Rodionova, The role of structural properties on magnetic characteristics of glass-coated microwires. J. Magn. Magn. Mater. 459, 61–65 (2018)

    Article  ADS  Google Scholar 

  43. V. Rodionova, I. Baraban, K. Chichay, A. Litvinova, N. Perov, The stress components effect on the Fe-based microwires magnetostatic and magnetostrictive properties. J. Magn. Magn. Mater. 422, 216–220 (2017)

    Article  ADS  Google Scholar 

  44. P. Klein, K. Richter, R. Varga, M. Vázquez, Frequency and temperature dependencies of the switching field in glass-coated FeSiBCr microwire. J. Alloy. compound 569, 9–12 (2013)

    Article  Google Scholar 

  45. A. Janutka, P. Gawronski, Structure of magnetic domain wall in cylindrical microwire. IEEE Trans. Magn. 51(5), 1–6 (2015)

    Article  Google Scholar 

  46. M. Vereshchagin, Structure of domain wall in cylindrical amorphous microwire. Phys. B Condens. Matter 549, 91–93 (2017)

    Article  ADS  Google Scholar 

  47. L.V. Panina, M. Ipatov, V. Zhukova, A. Zhukov, Domain wall propagation in Fe-rich amorphous microwires. Phys. B Condens. Matter 407, 1442–1445 (2012)

    Article  ADS  Google Scholar 

  48. I. Baraban, S. Leble, L. Panina, V. Rodionova, Control of magnetostatic and -dynamic properties by stress tuning in Fe-Si-B amorphous microwires with fixed dimensions. J. Magn. Magn. Mater. 447, 415–419 (2019)

    Article  ADS  Google Scholar 

  49. N.L. Schryer, L.R. Walker, The motion of \(180^\circ \) domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406 (1974). https://doi.org/10.1063/1.1663252

    Article  ADS  Google Scholar 

  50. V. Rodionova, V. Zhukova, M. Ilyn, M. Ipatov, N. Perov, A. Zhukov, The defects influence on domain wall propagation in bistable glass-coated microwires. Physica B 407, 1446–1449 (2012)

    Article  ADS  Google Scholar 

  51. A. Zhukov, M. Ipatov, J.M. Blanco, A. Chizhik, A. Talaat, V. Zhukova, Fast magnetization switching in amorphous microwires. Acta Phys. Pol. A 126(1), 7–11 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Leble .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leble, S. (2019). Microwaveguides. Magnetic Moment Transport. In: Waveguide Propagation of Nonlinear Waves. Springer Series on Atomic, Optical, and Plasma Physics, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-030-22652-7_9

Download citation

Publish with us

Policies and ethics