Microwaveguides. Magnetic Moment Transport

  • Sergey LebleEmail author
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 109)


The quantum theory of a multielectron system is based on the joint symmetry group of permutations and space symmetry. In the pioneering papers of Heisenberg (Zs Phys 49:619–636, 1928) [1], it was established, that the Weiss model of ferromagnetism is explained by electric interaction, whose origin may be understood on the basis of the quantum theory of the exchange interaction for the Heitler–London hydrogen molecule. It is naturally combined with Hartree–Fock theory Fock (Zs Phys 61:126, 1930) [2] and its further self-consistent one-particle generalizations, which provide better evaluations of the exchange integral. For the properties of the spectrum, see Popov and Melikhov (J Phys Conf Ser 541:012099/1-4, 2014) [3].


  1. 1.
    W. Heisenberg: Zur Theorie des Ferromagnetismus. Zs. Phys. 49, 619–636 (1928); Zur Quantentheorie des Ferromagnetismus. Probleme der Modernen Physik, A. Sommerfeld Festschrift. Leipzig, 1928, 114–122; Zur Theorie des Magnetpstriktin und der Magnetisierungkurve. Zs. Phys. 69, 287–297 (1931)Google Scholar
  2. 2.
    V. Fock: An Approximate Method for Solving the Quantum Many-Body Problem. (Reported at the Session of the Russian Phys.-Chem. Soc. on 17 December 1929). Zs. Phys. 61, 126 (1930); TOI 5(51), 1 (1931); UFN 93(2), 342 (1967)Google Scholar
  3. 3.
    I.Y. Popov, I.F. Melikhov, The discrete spectrum of the multiparticle Hamiltonian in the framework of the Hartree–Fock approximation. J. Phys. Conf. Ser. 541, 012099/1-4 (2014). IOP Publishing, BristolCrossRefGoogle Scholar
  4. 4.
    W. Heitler, Stäorungsenergie und Austausch beim Mehrkäorperproblem. Zs. Phys. 46, 47 (1927)ADSCrossRefGoogle Scholar
  5. 5.
    W. Heitler, Zur Gruppentheorie der homopolaren chemischen Bindung. Zs. Phys. 47, 835 (1928)ADSCrossRefGoogle Scholar
  6. 6.
    E. Wigner, Group Theory (Academic Press, New York, London, 1959)zbMATHGoogle Scholar
  7. 7.
    V. Fock: Zs. Phys. 81, 195 (1933); Application of Two-Electron Functions in the Theory of Chemical Bonds. DAN 73(4), 735 (1950)Google Scholar
  8. 8.
    V.A. Fock: On the Schrödinger equation for the helium atom. Izv. AN SSSR Serija Fiz. 18(2), 161–172 (1954); Det Kongelige Norske Videnssabers selskabs forhandlinger. 31(22–23), 138–152 (1958)Google Scholar
  9. 9.
    L.D. Landau, E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion 8(153), 101–114 (1935)zbMATHGoogle Scholar
  10. 10.
    B. Guo: Landau–Lifshitz Equations. Frontiers of Research with the Chinese Academy of Sciences, vol. 1 (2008)Google Scholar
  11. 11.
    I. Dzyaloshinskii, A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)Google Scholar
  12. 12.
    A. Zhukov, V. Zhukova, Magnetic Properties and Applications of Ferromagnetic Microwires with Amorphous and Nanocrystalline Structure, Nanotechnology Science and Technology Series (Nova Science Publishers, New York, 2009)Google Scholar
  13. 13.
    K. Porsezian: On the discrete and continuum integrable heisenberg spin chain models, in Future Directions of Nonlinear Dynamics in Physical and Biological Systems, ed. P.L. Christiansen, J.C. Eilbeck, R.D. Parmentier. NATO ASI Series (Series B: Physics), vol. 312 (Springer, Boston, MA, 1993)Google Scholar
  14. 14.
    M. Vázquez, Magnetic Nano- and Microwires: Design, Synthesis (Properties and Applications. Woodhead Publishing Series in Electronic and Optical Materials, Elsevier Science, 2015)Google Scholar
  15. 15.
    M. Lakshmanan, The fascinating world of the Landau-Lifshitz-Gilbert equation: an overview. Phil. Trans. R. Soc. A 369, 1280–1300 (2011)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    T.L. Gilbert, A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40(6), 3443–3449 (2004)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Lakshmanan, K. Nakumara, Landau-Lifshitz equation of ferromagnetism: Exact treatment of the Gilbert damping. Phys. Rev. Lett. 53, 2497–2499 (1984)ADSCrossRefGoogle Scholar
  18. 18.
    S. Kim, K. Ueda, G. Go, P.-H. Jang, K.-J. Lee, A. Belabbes, A. Manchon, M. Suzuki, Y. Kotani, T. Nakamura, K. Nakamura, T. Koyama, D. Chiba, K.T. Yamada, D.-H. Kim, T. Moriyama, Ono: Correlation of the Dzyaloshinskii–Moriya interaction with Heisenberg exchange and orbital asphericity. Nat. Commun. 9, 1648 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    A.N. Bogdanov, D.A. Yablonsky, Zh. Eksp. Teor. Fiz. 95, 178 (1989)Google Scholar
  20. 20.
    S. Muehlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Boeni, Science 323, 915 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    V.A. lgnatchenko, P.D. Kim, Domain-wall resonance in thin magnetic films. Zh. Exp. Teor. Fiz. 80, 2283 (1981)Google Scholar
  22. 22.
    D.C. Jiles, Introduction to Magnetism and Magnetic Materials, 2nd edn. (Taylor and Francis, UK, 1998)Google Scholar
  23. 23.
    I.R. Walker: Bell Telephone Laboratories Memorandum, 1956 (unpublished). An account of this work can be found in J.F. Dillon, Jr., Magnetism. Academic Press Inc., New York (1963)Google Scholar
  24. 24.
    B. Hu, X.R. Wang, Instability of walker propagating domain wall in magnetic nanowires. PRL 111, 027205 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    X.S. Wang et al., Phys. Rev. Lett. 109, 167209 (2012)ADSCrossRefGoogle Scholar
  26. 26.
  27. 27.
    D. Henry, Geometric Theory of Semilinear Parabolic Equations (Springer, Berlin, 1981)CrossRefGoogle Scholar
  28. 28.
    D. Bouzidi, H. Suhl, Phys. Rev. Lett. 65, 2587 (1990)ADSCrossRefGoogle Scholar
  29. 29.
    T. Kato: Perturbation Theory for Linear Operators. Reprint of the 1980 edition, Springer, 1980Google Scholar
  30. 30.
    X.S. Wang, X.R. Wang, Phys. Rev. B 90, 184415 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    M. Yan et al., Appl. Phys. Lett. 99, 122505 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    S.F. Hafstein, C.M. Kellett, H. Li, Computing continuous and piecewise affine Lyapunov functions for nonlinear systems. J. Comput. Dyn. 2(2), 227–246 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    S.F. Hafstein: Computation of Lyapunov functions for switched systems using linear programming. Workshop: Efficient control of magnetization switching, 25 July 2018, University of IcelandGoogle Scholar
  34. 34.
    D.A. Allwood, R.P. Cowburn, Magnetic Domain Wall Logic (Wiley-VCH Verlag Gmb. Co, KGaA, 2010)CrossRefGoogle Scholar
  35. 35.
    J. Olivera, M. Gonzalez, J. Fuente, R. Varga, A. Zhukov, J.J. Anaya, An embedded stress sensor for concrete SHM based on amorphous ferromagnetic microwires. 14(19963–78), 11 (2014)Google Scholar
  36. 36.
    R. Varga, A. Zhukov, V. Zhukova, J.M. Blanco, J. Gonzalez, Supersonic domain wall in magnetic microwires. Phys. Rev. B 76, 132406 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    M. Vazquez, D.X. Chen, The magnetization reversal process in amorphous wires. IEEE Transactions on Magnetics 31(2), 1229–1238 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    H. Chiriac, T.-A. Ovari, A. Zhukov, Magnetoelastic anisotropy of amophous microwires. Journal of Magnetism and Magnetic Materials 254–255, 469–471 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    A.S. Antonov, V.T. Borisov, O.V. Borisov, V.A. Pozdnyakov, A.F. Prokoshin, N.A. Usov, Residual quenching stresses in amorphous ferromagnetic wires produced by an in-rotating-water spinning process. Journal of Physics D: Applied Physics 32(15), 1788 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    S.A. Gudoshnikov, YuB Grebenshchikov, B.Ya. Ljubimov, P.S. Palvanov, N.A. Usov, M. Ipatov, A. Zhukov, J. Gonzalez, Ground state magnetization distribution and characteristic width of head to head domain wall in Fe-rich amorphous microwire. Phys. Status Solidi A 206, 613 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    A.M. Severino, C. Gómez-Polo, P. Marin, M. Vázquez, Influence of the sample length on the switching process of magnetostrictive amorphous wire. J. Magn. Magn. Mater. 103(1), 117–125 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    I. Baraban, M. Gorshenkov, N. Andreev, K. Chichay, V. Rodionova, The role of structural properties on magnetic characteristics of glass-coated microwires. J. Magn. Magn. Mater. 459, 61–65 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    V. Rodionova, I. Baraban, K. Chichay, A. Litvinova, N. Perov, The stress components effect on the Fe-based microwires magnetostatic and magnetostrictive properties. J. Magn. Magn. Mater. 422, 216–220 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    P. Klein, K. Richter, R. Varga, M. Vázquez, Frequency and temperature dependencies of the switching field in glass-coated FeSiBCr microwire. J. Alloy. compound 569, 9–12 (2013)CrossRefGoogle Scholar
  45. 45.
    A. Janutka, P. Gawronski, Structure of magnetic domain wall in cylindrical microwire. IEEE Trans. Magn. 51(5), 1–6 (2015)CrossRefGoogle Scholar
  46. 46.
    M. Vereshchagin, Structure of domain wall in cylindrical amorphous microwire. Phys. B Condens. Matter 549, 91–93 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    L.V. Panina, M. Ipatov, V. Zhukova, A. Zhukov, Domain wall propagation in Fe-rich amorphous microwires. Phys. B Condens. Matter 407, 1442–1445 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    I. Baraban, S. Leble, L. Panina, V. Rodionova, Control of magnetostatic and -dynamic properties by stress tuning in Fe-Si-B amorphous microwires with fixed dimensions. J. Magn. Magn. Mater. 447, 415–419 (2019)ADSCrossRefGoogle Scholar
  49. 49.
    N.L. Schryer, L.R. Walker, The motion of \(180^\circ \) domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406 (1974). Scholar
  50. 50.
    V. Rodionova, V. Zhukova, M. Ilyn, M. Ipatov, N. Perov, A. Zhukov, The defects influence on domain wall propagation in bistable glass-coated microwires. Physica B 407, 1446–1449 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    A. Zhukov, M. Ipatov, J.M. Blanco, A. Chizhik, A. Talaat, V. Zhukova, Fast magnetization switching in amorphous microwires. Acta Phys. Pol. A 126(1), 7–11 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Immanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations