Skip to main content

Guide Propagation and Interaction of Plasma Waves. Metamaterials

  • Chapter
  • First Online:
Waveguide Propagation of Nonlinear Waves

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 109))

  • 661 Accesses

Abstract

In this chapter we sketch the basic mathematical equations, adding general relations and inhomogeneity or boundary conditions as a reason for guide formation in a plasma, and illustrating them with simple examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.I. Petviahsvili, Fiz. Plasmy SSSR I, 28 (1975)

    Google Scholar 

  2. V.L. Ginsburg, A.A. Rukhadze, Waves in Magnetoactive Plasma (Nauka, Moscow, 1975)

    Google Scholar 

  3. V.P. Silin, Introduction to the Kinetic Theory of Gases (Lebedev Inst Press, Moscow, 1998), in Russian

    Google Scholar 

  4. A.A. Vlasov, J. Exp. Theor. Phys. 8, 291 (1938)

    Google Scholar 

  5. L.D. Landau, J. Exp. Theor. Phys. 16, 574 (1946)

    Google Scholar 

  6. S.B. Leble, Waveguide Propagation of Nonlinear Waves in Stratified Media (Leningrad University Press, Leningrad, 1988), in Russian; extended edn. (Springer, Berlin, 1990)

    Google Scholar 

  7. D. Bohm, E.P. Gross, Theory of plasma oscillations. Excitation and damping of oscillations. Phys. Rev. 75, 1864 (1949)

    Article  ADS  Google Scholar 

  8. V.P. Silin, V.T. Tikhonchuk, J. Exp. Theor. Phys. 81, 2039–2051 (1981)

    Google Scholar 

  9. V.M. Babich, V.S. Buldyrev, I.A. Molotkov, Space-Time Ray Method: Linear and Nonlinear Waves (Leningrad University Press, Leningrad, 1985)

    Google Scholar 

  10. I.V. Karpov, S.B. Leble, V.M. Smertin, Geomagnet. Aeron. SSSR 4, 672–673 (1983)

    ADS  Google Scholar 

  11. A.A. Zaitsev, S.B. Leble, Theory of Nonlinear Waves (Kaliningrad University Press, Kaliningrad, 1984)

    Google Scholar 

  12. V.E. Zakharov, S.V. Manakov, S.P. Novikov, J.P. Pitaevski, Theory of Solitons. The Method of Inverse Problems (Nauka, Moscow 1980); [English: Plenum, New York 1984]

    Google Scholar 

  13. V.I. Petviashvili, Vopr. Teor. Piaz. 9(11), 59–82 (1979)

    Google Scholar 

  14. L.M. Gorbunov, V.P. Silin, J. Exp. Theor. Phys. 47, 203–210 (1964)

    Google Scholar 

  15. L.M. Gorbunov, A.M. Tunerbulatov, J. Exp. Theor. Phys. 53, 1494–1497 (1967)

    Google Scholar 

  16. V.P. Maslov: Mathematical Aspects of Integral Optics, Moscow Institute of Electronic Engineering (1983)

    Google Scholar 

  17. SYu. Dobrokhotov, V.P. Maslov, Soviet Science Review, vol. 3 (Overseas Publishing Association, Harwood, 1982), pp. 221–311

    Google Scholar 

  18. V.E. Zakharov, J. Exp. Theor. Phys. 62, 1745–1755 (1972)

    Google Scholar 

  19. V.I. Talanov, ZhETF Pis. Red. 2, 223 (1965) [JETP Lett. 2, 141 (1965)]; V.E. Zakharov: J. Appl. Mech. Tech. Phys. 9, 190 (1968)

    Google Scholar 

  20. V.E. Zakharov, A.B. Shabat: (1971) Exact theory of two-dimensional self- focusing and one-dimensional modulation of waves in nonlinear media. Zhurn. Eksp. Teor. Fiz. 61, 118–134 [(1972). Sov. Phys. JETP 34, 62–69]

    Google Scholar 

  21. S.B. Leble, D.W. Rohraff, Nonlinear evolution of components of an electromagnetic field of helicoidal waves in plasma. Phys. Scr. 123, 140–144 (2006)

    Article  Google Scholar 

  22. V.P. Dmitriyev, Helical waves on a vortex filament. Am. J. Phys. 73, 563 (2005). https://doi.org/10.1119/1.1873892

    Article  ADS  Google Scholar 

  23. G. Sato, W. Oohara, R. Hatakeyama, Plasma production by helicon waves with single mode number in low magnetic fields, in 12th International Congress on Plasma Physics, 25–29 October 2004, Nice (France)

    Google Scholar 

  24. E. Doktorov, S.B. Leble, Dressing Method in Mathematical Physics (Springer, Berlin, 2007)

    Google Scholar 

  25. B.G. Konopelchenko, Introduction to Multidimensional Integrable Equations: The Inverse Spectral inverse spectral transform in 2+1 dimensions (Plenum Press, New York, 1992)

    Google Scholar 

  26. S. Shinohara, K. Shamrai, Direct comparison of experimental and theoretical results on the antenna loading and density jumps in a high pressure helicon source. Plasma Phys. Control. Fusion 42, 865–880 (2000)

    Article  ADS  Google Scholar 

  27. B.W. Maxfield, Helicon waves in solids. Am. J. Phys. 37(3), 241–269 (1969)

    Article  ADS  Google Scholar 

  28. S. Leble, M. Salle, The Darboux transformations for the discrete analogue of the Silin-Tikhonchuk equation. Dokl. AN SSSR 284, 110–114 (1985)

    MathSciNet  Google Scholar 

  29. T.J. Cui, D.R. Smith, R. Liu (eds): Metamaterials: Theory, Design, and Applications (Springer, Berlin, 2010)

    Google Scholar 

  30. R.W. Ziolkowski, A. Kipple, Causality and double-negative metamaterials. Phys. Rev. E 68, 026615 (2003)

    Article  ADS  Google Scholar 

  31. R.W. Ziolkowski, F. Auzanneau, Passive artificial molecule realizations of dielectric materials. J. Appl. Phys. 82, 3195–3198 (1997)

    Article  ADS  Google Scholar 

  32. K.V. Pravdin, I.Y. Popov, Layered system with metamaterials. J. Phys.: Conf. Ser. 661(1), 012025 (2015)

    Google Scholar 

  33. A.A. Perelomova, Projectors in nonlinear evolution problem: acoustic solitons of bubbly liquid. Appl. Math. Lett. 13, 93–98 (2000); Nonlinear dynamics of vertically propagating acoustic waves in a stratified atmosphere. Acta Acustica 84 (6), 1002–1006 (1998)

    Article  MathSciNet  Google Scholar 

  34. S.V. Sazonov, N.V. Ustinov, New class of extremely short electromagnetic solitons. General class of the traveling waves propagating in a near oppositely-directional coupler. Pis’ma v Zh. Eksper. Teoret. Fiz. 83(11), 573–578 (2006)

    Article  ADS  Google Scholar 

  35. T. Schäfer, C.E. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media. Phys. D 196, 90–105 (2004)

    Article  MathSciNet  Google Scholar 

  36. Y. Chung, C.K.R.T. Jones, T. Schäfer, C.E. Wayne, Ultra-short pulses in linear and nonlinear media. Nonlinearity 18, 1351–1374 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  37. Z. Zhaqilao, Q. Hu, Z. Qiao, Multi-soliton solutions and the Cauchy problem for a two-component short pulse system. Nonlinearity 30(10), 3773 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  38. P. Kinsler, Phys. Rev. A 81, 023808 (2010)

    Article  ADS  Google Scholar 

  39. V.V. Belov, SYu. Dobrokhotov, T.Y.A. Tudorovskiy, Operator separation of variables for adiabatic problem in quantum and wave mechanics. J. Eng. Math. 55(1–4), 183–237 (2006)

    Article  MathSciNet  Google Scholar 

  40. M. Kuszner, S. Leble, Directed electromagnetic pulse dynamics: projecting operators method. J. Phys. Soc. Jpn. 80, 024002 (2011)

    Article  ADS  Google Scholar 

  41. A. Perelomova, Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound. Phys. Lett. A 357, 42–47 (2006)

    Article  ADS  Google Scholar 

  42. M. Kuszner, S. Leble, Ultrashort opposite directed pulses dynamics with Kerr effect and polarization account. J. Phys. Soc. Jpn. 83, 034005 (2014)

    Article  ADS  Google Scholar 

  43. K. Porsezian, V.C. Kuriakose, Optical Solitons (Springer, Berlin, 2003)

    Book  Google Scholar 

  44. S. Pitois, G. Millot, S. Wabnitz, Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: theory and experiments. J. Opt. Soc. Am. B 18(4) (2001)

    Article  ADS  Google Scholar 

  45. S. Leble, D. Ampilogov, Directed electromagnetic wave propagation in 1D metamaterial: projecting operators method phys. Lett. A 380(29–30), 2271–2278 (2016)

    ADS  MathSciNet  Google Scholar 

  46. D. Ampilogov, S. Leble, General equation for directed electromagnetic wave propagation in 1D metamaterial: projecting operator method. TASK Q. 20(2) (2016)

    Google Scholar 

  47. D. Ampilogov, S. Leble, Interaction of orthogonal-polarized waves in 1D metamaterial with Kerr nonlinearity, arXiv:1802.09523 [physics.optics]; D. Ampilogov: Interaction of orthogonal-polarized waves in 1D-metamaterial. TASK Q. 21(2), 605–619 (2017)

  48. S. Leble, A. Perelomova, Dynamical Projectors Method in Hydro- and Electrodynamics (CRC Press, Taylor and Francis, Boca Raton, 2018)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Leble .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leble, S. (2019). Guide Propagation and Interaction of Plasma Waves. Metamaterials. In: Waveguide Propagation of Nonlinear Waves. Springer Series on Atomic, Optical, and Plasma Physics, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-030-22652-7_7

Download citation

Publish with us

Policies and ethics