Advertisement

Waveguide Propagation in Hydrodynamics

  • Sergey LebleEmail author
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 109)

Abstract

For the sake of completeness we begin our discussion with the physical foundations of the theory of wave motion in an ideal fluid, taking into account dissipation effects. Stationary states that do not affect the dynamical variables are also introduced. A waveguide model of the atmosphere or ocean conventionally uses boundary conditions at the Earth’s surface, which is below the air and above the ocean water. The second boundary for the atmosphere is rather conditional and depends on the wave type and wavelength. A similar situation occurs for the ocean [1, 2]. In a nonlinear theory, the determination of the ground state is nontrivial. The assumption of stationarity is to some degree arbitrary and requires justification. Indeed, in experiments, large scale motion is regarded as a background phenomenon, but the mutual interaction of such motions may give rise to nonlinear effects of infinite intensity. Therefore, in this book we shall refer to a ground state only when we mean an elementary stationary state without convective nonlinearities. We shall initially consider all other states to be dynamically interacting.

References

  1. 1.
    E.E. Gossard, W.H. Hooke, Waves in the Atmosphere (Elsevier, New York, 1975)Google Scholar
  2. 2.
    J. Pedlosky, Geophysical Fluid Dynamics (Springer, New York, 1979)zbMATHGoogle Scholar
  3. 3.
    V.P. Silin, Introduction to the Kinetic Gas Theory (Nauka, Moscow, 1971)Google Scholar
  4. 4.
    F.M. Kuni, Statistical Physics and Thermodynamics (Nauka, Moscow, 1981)Google Scholar
  5. 5.
    G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)zbMATHGoogle Scholar
  6. 6.
    S.B. Leble, Nonlinear Waves in Waveguides with Stratification (Springer, Berlin 1990), 164 ppGoogle Scholar
  7. 7.
    Y. Brezhnev, S. Kshevetsky, S. Leble, Linear initialization of hydrodynamical fields. Atmos. Ocean. Phys. 30(10), 84–88 (1994)Google Scholar
  8. 8.
    S. Leble, D. Vereshchagin, Properties of internal waves in atmosphere stratified in Knudsen number. Atmos. Ocean. Phys. 23, 815–820 (1987)Google Scholar
  9. 9.
    O.A. Godin, N.A. Zabotin, T.W. Bullett, Acoustic-gravity waves in the atmosphere generated by infragravity waves in the ocean. Earth, Planets Space 67(1), 47 (2015)ADSGoogle Scholar
  10. 10.
    S. Leble, Theory of thermospheric waves and their ionosphere effects. Pure Appl. Geophys. 127(2/3), 491–527 (1988)ADSGoogle Scholar
  11. 11.
    S. Leble, A. Perelomova, Dynamical Projectors Method in Hydro- and Electrodynamics (CRC Press, Taylor and Francis, Boca Raton, 2018)zbMATHGoogle Scholar
  12. 12.
    F. Bessarab, S. Kshevetskij, S. Leble, On the acoustic-gravity wave interaction in atmosphere. Problems of nonlinear acoustics, in Proceedings of IUPAP, IUTAM Symposium on Nonlinear Acoustics, ed. by V.K. Kedrinskii (AN USSR, Siberian Division, Novosibirsk, 1987)Google Scholar
  13. 13.
    R.R. Long, Tellus 17, 46 (1965)ADSMathSciNetGoogle Scholar
  14. 14.
    T. Benjamin, J. FIuid Mech. 25, 241–270 (1966)ADSGoogle Scholar
  15. 15.
    YuD Borisenko, A.G. Voronovich, A.I. Leonov, YuZ Miropolsky, Atmos. Ocean. Phys. 12, 293–301 (1976)Google Scholar
  16. 16.
    A.I. Leonov, Y.Z. Miropolsky, Atmos. Ocean. Phys. 11 (1975)Google Scholar
  17. 17.
    L.A. Ostrovsky, E.N. Pelinovsky, Prikl. Mekh. Math. SSSR 38, 121–124 (1974)Google Scholar
  18. 18.
    N.A. Korneev, S.P. Kshevetsky, S.B. Leble, in Studies of the Ionosphere, vol. 32 (Radio i Svyaz, Moscow, 1982) pp. 54–56Google Scholar
  19. 19.
    S.A. Ennakov, E.N. Pelinovsky, Izv.Akad. Nauk SSSR, Fiz. Auu. Okean 11, 1055–1061 (1975)Google Scholar
  20. 20.
    A.D. Richmond, S. Matsushita, J. Geophys. Res. 80(A9), 2839–3850 (1975)ADSGoogle Scholar
  21. 21.
    S.P. Kshevetsky, S.B. Leble, Izv. Akad. Nauk SSSR, Fiz. AIm. Okean 21, 170–176 (1985)Google Scholar
  22. 22.
    E.N. Pelinovsky, N.N. Romanova, I .Akad. Nauk SSR, Fiz. Auu. Okean 13, 1169–1174 (1977)Google Scholar
  23. 23.
    C.S. Wang Chang, G.E. Uhlenbeck, On the Propagation of Sound in Monoatomic Gases. Eng. Res. Ins., University of Michigan. Project M 999 (Ann. Arbor, Michigan, 1952)Google Scholar
  24. 24.
    E. Meyer, G. Sessler, Schalaus breiting in gasen bei hohoen frequenzen und sehr niedrigen drucken. Z. Physik 149, 15–39 (1957)ADSMathSciNetGoogle Scholar
  25. 25.
    A. Banankhah, S.K. Loyalka, Propagation of a sound wave in a rarefied polyatomic gas. Phys. Fluids 30(1), 56–64 (1987)ADSGoogle Scholar
  26. 26.
    S.K. Loyalka, T.S. Cheng, Sound wave propagation in a rarefied gas. Phys. Fluids 22(5), 830–836 (1979)ADSzbMATHGoogle Scholar
  27. 27.
    S.B. Leble, D.A. Vereshchagin, Kinetic Description of Sound Propagation in Exponentially Stratified Media. Advances in Nonlinear Acoustic, ed. by H. Hobaek (World Scientific, Singapore, 1993), pp. 219–224Google Scholar
  28. 28.
    D.A. Vereshchagin, S.B. Leble, Stratified gas and nonlinear waves passing the Knudsen layer, in Proceedings of International Symposium on Nonlinear Theory and Its Applications “NOLTA ’93”, vol. 3 (Hawaii, 1993), pp. 1097–1100Google Scholar
  29. 29.
    D.A. Vereshchagin, S.B. Leble, Piecewise continuous partition function and acoustics in stratified gas, in Nonlinear Acoustics in Perspective, ed. by R. Wei (1996), pp. 142–146Google Scholar
  30. 30.
    X. Chen, H. Rao, E. Spiegel, Macroscopic equations for rarefied gas dynamics. Phys. Lett. A 271, 87–91 (2000)ADSzbMATHGoogle Scholar
  31. 31.
    X. Chen, H. Rao, E.A. Spiegel, Continuum description of rarefied gas dynamics: II. The propagation of ultrasound. Phys. Rev. E 64, 046309 (2001)Google Scholar
  32. 32.
    D.A. Vereshchagin, S.B. Leble, M.A. Solovchuk, Piecewise continuous distribution function method in the theory of wave disturbances of inhomogeneous gas. Phys. Lett. A 348(3–6), 326–334 (2006)ADSGoogle Scholar
  33. 33.
    S.B. Leble, M.A. Solovchuk, Three-dimensional fluid equations from distribution function with discontinuity in velocity space. Math. Model. 18(4), 118–128 (2006)zbMATHGoogle Scholar
  34. 34.
    S. Leble, M. Solovchuk, One-dimensional ultrasound propagation in stratified gas. Arch. Acoust. 34(2), 215–229 (2009)Google Scholar
  35. 35.
    P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)ADSzbMATHGoogle Scholar
  36. 36.
    E.P. Gross, E.A. Jackson, Kinetic models and linearized Boltzmann equation. Phys. Fluids 2(4), 432–441 (1959)ADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    A.K. Shchekin, S.B. Leble, D.A. Vereshchagin, Introduction to the Physical Kinetics of Rarefied Gases (Kaliningrad, 1990), 80 pp. (in Russian)Google Scholar
  38. 38.
    L. Lees, Kinetic theory description of rarefied gas flow. J. Soc. Ind. Appl. Math. 13(1), 278–311 (1965)MathSciNetGoogle Scholar
  39. 39.
    I.P. Shidlovskij, Introduction to Rarified Gas Dynamics (Moscow, Nauka, 1965), 220 pp. (in Russian), Ing. J. 3(3) (1963) (in Russian)Google Scholar
  40. 40.
    H.M. Mott-Smith, The solution of the Boltzmann equation for a shock wave. Phys. Rev. 82, 885–892 (1951)ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    K. Nanbu, Y. Watanabe, Analysis of the internal structure of shock waves by means of the exact direct-simulation method. Rep. Inst. High Speed. Mech. 48(366), 1–75 (1984)Google Scholar
  42. 42.
    R.E. Sampson, G.S. Springer, Condensation on and evaporation from droplets by a moment method. J. Fluids. Mech. 36, Part 3, 577–584 (1969)ADSzbMATHGoogle Scholar
  43. 43.
    I. Ivchenko, Evaporation (condensation) theory of spherical particles with all Knudsen number. J. Coll. Interface Sci. 120(1), 1–7 (1987)ADSGoogle Scholar
  44. 44.
    S.B. Leble, F.L. Roman, D.A. Vereshchagin, J.A. White, Molecular dynamics and momenta BGK equations for rarefied gas in gravity field, in Proceedings of 8th Joint EPS-APS International Conference Physics Computing CYFRONET-KRAKOW, ed. by P. Borcherds, M. Bubak, A. Maksymowicz (1996), pp. 218–221Google Scholar
  45. 45.
    O.A. Godin, Wentzel-Kramers-Brillouin approximation for atmospheric waves. J. Fluid Mech. 777, 260–290 (2015)ADSMathSciNetzbMATHGoogle Scholar
  46. 46.
    D.A. Vereshchagin, A.K. Shchekin, S.B. Leble, Boundary regime propagation in a stratified gas with arbitrary Knudsen number. Zhurnal Prikl. Mech. Tehn. Fiz., No. 5, 70–79 (in Russian)Google Scholar
  47. 47.
    V.P. Maslov, The Complex WKB Method for Nonlinear Equations. I. Linear Theory. Progress in Physics vol. 16 (Birkhauser Verlag, Basel, 2012), VIII 300 ppGoogle Scholar
  48. 48.
    S. Leble, On the Kadomtsev–Petviashvili equation analogue in the internal waves theory. Izv. AN SSSR, Fiz. Atm. Ocean 20, 1199–1205 (1982)Google Scholar
  49. 49.
    A.D. McEwan, Internal mixing in stratified fluids. J. Fluid Mech. 128, 59–80 (1983)ADSGoogle Scholar
  50. 50.
    A.D. McEwan, The kinematics of stratified mixing through internal wavebreaking. J. Fluid Mech. 128, 47–57 (1983)ADSGoogle Scholar
  51. 51.
    A. Halim, S. Leble, S. Kshevetskij, Numerical integration of a coupled Korteweg-de Vries system. Comput. Math. Appl. 45, 581–591 (2003)MathSciNetzbMATHGoogle Scholar
  52. 52.
    A. Halim, S. Leble, Analytical and numerical solution integration of a coupled KdV-MKdV system CSF 19, 99–108 (2003)Google Scholar
  53. 53.
    S. Zhu, A difference scheme for the coupled KdV equation. Commun. Nonlinear Sci. Numer. Simul. 4(1), 60–63 (1999)ADSMathSciNetzbMATHGoogle Scholar
  54. 54.
    S.P. Kshevetskii, Analytical and numerical invesitigation of nonlinear internal gravity waves. Nonlinear Process. Geophys. 8, 37–53 (2001)ADSGoogle Scholar
  55. 55.
    J.C. Tannehill, D.A. Anderson, R.H. Pletcher, Computational Fluid Mechanics and Heat Transfer (Taylor & Francis, Washington, USA, 1997)zbMATHGoogle Scholar
  56. 56.
    A.A. Halim, S.P. Kshevetskii, S.B. Leble, Approximate solution for Euler equations of stratified water via numerical solution of coupled KdV system. Int. J. Math. Math. Sci. 2003(63), 3979–3993 (2003).  https://doi.org/10.1155/S0161171203212242MathSciNetzbMATHGoogle Scholar
  57. 57.
    P.B. Rhines, Rossby waves. Encycl. Atmos. Sci. 1–36 (2002)Google Scholar
  58. 58.
    A. Aguiar, P. Read, Instabilities of a barotropic shear layer in a rotating fluid: asymmetries with respect to sgn(Ro). Meteorol. Z. 15(4), 417–422 (2006)Google Scholar
  59. 59.
    E.N. Blinova, Hydrodynamic theory of pressure waves and of the centers of action of the atmosphere. Dokl. Akad. Nauk SSSR 39(3) (1943). Dokl. Akad. Nauk SSSR 123, 440–442 (1958). Dokl. Akad. Nauk SSSR 147, 1355–1358 (1962)Google Scholar
  60. 60.
    R. Hide, R.J. Mason, R.A. Plumb, J. Atmos. Sci. 34, 930–950 (1977)ADSGoogle Scholar
  61. 61.
    M. Moroz, J. Brindley, Proc. R. Soc. Lond. A 377, 379–404 (1981)ADSGoogle Scholar
  62. 62.
    I. Karpov, S. Leble, On problem of Rossby and poincaré atmospheric wave separation and spectra. TASK Q. 221(2), 85–96 (2016)Google Scholar
  63. 63.
    D. Altadill, Planetary wave type oscillations in the ionospheric F-region. Adv. Space Res. 26(8), 1276–1287 (2000)Google Scholar
  64. 64.
    X.-H. Zhu, A. Kaneko, N. Gohda, H. Inaba, K. Kutsuwada, M.-H. Radenac, Observation of mixed Rossby gravity waves in the western equatorial Pacific. J. Ocean. 54133–141 (1998)Google Scholar
  65. 65.
    S. Leble, D. Vereshchagin, A. Shchekin, Local dispersion relations for AGW in dissipative atmosphere. Izv. AN SSSR, Fiz. Atm. Oc. 23, 95–106 (1991)Google Scholar
  66. 66.
    P. Lancaster, Theory of Matrices (Academic, New York, 1969)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Immanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations