Advertisement

Solitonics

  • Sergey LebleEmail author
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 109)

Abstract

In this chapter, partially following Leble (Optical Solitons. Theoretical and Experimental Challenges. Springer, Berlin, pp. 71–104, 2003) [1], we sketch the basic mathematical tools used in the theory of integrable systems embedded into the waveguide propagation of nonlinear waves, starting from general relations and illustrating them by simple examples.

References

  1. 1.
    S. Leble, Nonlinear waves in optical waveguides and Soliton theory applications, in Optical Solitons. Theoretical and Experimental Challenges. (Springer, Berlin, 2003), pp. 71–104CrossRefGoogle Scholar
  2. 2.
    S.P. Novikov, S.V. Manakov, L.P. Pitaevski, V.E. Zakharov, Theory of Solitons (Plenum, New York, 1984)Google Scholar
  3. 3.
    S. Leble, Nonlinear Waves in Waveguides (Springer, Berlin, 1991)CrossRefGoogle Scholar
  4. 4.
    V.E. Zakharov, S. Wabnitz (eds.), Optical Solitons, Theoretical Challenges and Industrial Perspectives, Les Houches Workshop, 1998 (Springer, Berlin, 1999)Google Scholar
  5. 5.
    V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons (Springer, Berlin, 1991)CrossRefGoogle Scholar
  6. 6.
    S. Leble, Elementary and binary Darboux transformations at rings. Comput. Math. Appl. 35, 73 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Leble, Theor. Math. Phys. 22, 239 (2000)Google Scholar
  8. 8.
    D.J. Kaup, The first-order perturbed SBS equations. J. Nonlinear Sci. 3, 427 (1993)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    I. Leonhardt, H. Steudel, Evolution of solitons in stimulated raman-scattering from cos-shaped initial pulses. Appl. Phys. B 60, S221–S225 (1995)Google Scholar
  10. 10.
    J. Leon, A. Mikhailov, Raman soliton generation from laser inputs in SRS. Phys. Lett. A 253, 33 (1999)CrossRefADSGoogle Scholar
  11. 11.
    V. Cautaerts, Y. Kodama, A. Maruta, H. Sugavara: Nonlinear Pulses in Ultra-Fast Communications. Les Houches Lectures, Lecture 9. (Springer, Berlin, 1999), p. 147Google Scholar
  12. 12.
    E. Doktorov, S.B. Leble, Dressing Method in Mathematical Physics (Springer, Berlin, 2007)CrossRefGoogle Scholar
  13. 13.
    S.B. Leble, N.V. Ustinov, Solitons of nonlinear equations associated with degenerate spectral problem of the third order, in Nonlinear Theory and Its Applications (NOLTA’93), ed. by M. Tanaka, T. Saito (World Scientific, Singapore, 1993), pp. 547–550Google Scholar
  14. 14.
    A.V. Mikhailov, The reduction problem and the inverse scattering method. Physica D 3, 73 (1981)CrossRefADSGoogle Scholar
  15. 15.
    V. Gerdjikov, A. Yanovski, Completeness of the eigenfunctions for the Caudrey–Beals–Coifman system. J. Math. Phys. 35, 3687 (1994)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    S.B. Leble, N.V. Ustinov, On soliton and periodic solutions of Maxwell-Bloch system for two-level medium with degeneracy. CSF 11, 1763 (2000). arXiv:quant-ph/9810049MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    A.M. Basharov, A.I. Maimistov, JETP 87, 1595 (1984)Google Scholar
  18. 18.
    J. Eerkens, J.F. Kunze, L.J. Bond, Laser isotope encrichment for medical and industrial applications. (January 2006).  https://doi.org/10.1115/ICONE14-89767
  19. 19.
    L.A. Bolshov, N.N. Elkin, V.V. Likhansky, M.I. Persiantsev, The theory of the coherent transformation of the frequency of ultrashort light pulses in resonant media. JETP 94, 101 (1988)Google Scholar
  20. 20.
    S. Leble, N.V. Ustinov, The third order spectral problem reductions and darboux transformations. Inverse Probl. 10, 617 (1994)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    M. Kuna, M. Czachor, S. Leble, Nonlinear von Neumann-type equations: darboux invariance and spectra. Phys. Lett. A 255, 42 (1999)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    H. Steudel, in Proceedings of 3rd International Workshop on Nonlinear Processes in Physics, ed. by V.G. Bar’yakhtar et al., vol. 1. (Kiev, Naukova Dumka, 1988), p. 144Google Scholar
  23. 23.
    H. Steudel, N-soliton solutions to degenerate self-induced transparency. J. Mod. Opt. 35, 693 (1988)CrossRefADSGoogle Scholar
  24. 24.
    S. Leble, Integrable models for density matrix evolution, in: Proceedings of the workshop on Nonlinearity, Integrability and all that: Twenty Years after NEEDS’79, ed. by M. Boiti et al. (World Scientific, 2000) pp. 311–317Google Scholar
  25. 25.
    S.B. Leble, M. Czachor, Darboux-integrable nonlinear Liouville-von Neumann equation. Phys. Rev. E 58, 7091–7100 (1998). arXiv:quant-ph/9804052MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    S. Manakov: Funktsional’nyi Analiz i Pril. 10, 93 (1976)Google Scholar
  27. 27.
    M. Adler, P. van Moerbeke, Completely integrable systems, Euclidean Lie algebras, and curves. Adv. Math. 38, 267 (1980)MathSciNetCrossRefGoogle Scholar
  28. 28.
    N. Ustinov, S. Leble, M. Czachor, M. Kuna, Darboux-integration of \(\imath \rho _t = [H, f(\rho )]\). Phys. Lett. A 279, 333 (2001). arXiv:quant-ph/0005030
  29. 29.
    M. Czachor, S. Leble, M. Kuna, J. Naudts, Nonlinear von Neumann type equations, in: Proceedings of the International Symposium on Trends in Quantum Mechanics, ed. H.-D. Doebner et al. (World Scientific, 2000) pp. 209–226Google Scholar
  30. 30.
    H. Steudel, D.J. Kaup, Degenerate two-photon propagation and the oscillating two-stream instability: the general solution for amplitude-modulated pulses. J. Mod. Opt 43, 1851–1866 (1996)CrossRefADSGoogle Scholar
  31. 31.
    R.K. Boullough, P.M. Jack, P.W. Kitchenside, R. Saunders, Solitons in laser physics. Physica Scripta 20, 364 (1979)MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    M. Chbat, C. Menyuk, I. Glesk, P. Prucnal, Interactions of bound multiple solitons in strongly birefringent fibers. Opt. Lett. 20, 258 (1995)CrossRefADSGoogle Scholar
  33. 33.
    R.A. Vlasov, E.V. Doktorov, Covariant methods in theoretical physics, optics and acoustics. 94 Minsk (1981)Google Scholar
  34. 34.
    S. Kakei, J. Satsuma, Multi-soliton solutions of a coupled system of the nonlinear Schrodinger equation and the Maxwell-Bloch equations. J. Phys. Soc. Jpn. 63, 885 (1994)MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    R.K. Boullough, F. Ahmad, Exact solutions of the self-induced transparency equations. Phys. Rev. Lett. 27, 330 (1971)CrossRefADSGoogle Scholar
  36. 36.
    J.U. Kang, G.I. Stegeman, J.S. Atchison, One-dimensional spatial soliton dragging, trapping, and all-optical switching in AlGaAs waveguides. Opt. Lett. 21, 189 (1996)CrossRefADSGoogle Scholar
  37. 37.
    P.L. Christiansen, J.C. Eilbeck, V.Z. Enolski, N.A. Kostov, Quasi-periodic and periodic solutions for coupled nonlinear Schrodinger equations of Manakov type. Proc. R. Soc. Lond. A 456, 2263 (2000)MathSciNetCrossRefADSGoogle Scholar
  38. 38.
    H. Steudel, Annalen der Physik (Leipzig) 32(205), 445 (1975)CrossRefADSGoogle Scholar
  39. 39.
    D.J. Kaup, Perturbation theory for solitons in optical fibers. Phys. Rev. A 42, 5689 (1990)CrossRefADSGoogle Scholar
  40. 40.
    J. Yang, Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics. Phys. Rev. E 59, 2393 (1999)MathSciNetCrossRefADSGoogle Scholar
  41. 41.
    V. Shchesnovich, E. Doctorov, Modified Manakov system with self-consistent source. Phys. Lett. A 213, 23 (1996)MathSciNetCrossRefADSGoogle Scholar
  42. 42.
    C. Anastassiu, M. Segev, K. Steiglitz et al., Energy-exchange interactions between colliding vector solitons. PRL 83, 2332 (1999)CrossRefADSGoogle Scholar
  43. 43.
    V. Gerdjikov et al., Stability and quasi-equidistant propagation of NLS soliton trains. Phys. Lett. A 241, 323 (1998)MathSciNetCrossRefADSGoogle Scholar
  44. 44.
    A.I. Maimistov, E.A. Manykin, Propagation of ultrashort optical pulses in resonant non-linear light guides. Sov. Phys. JETP 58, 685 (1983)Google Scholar
  45. 45.
    S. Chakravarty, Soliton solutions of coupled Maxwell–Bloch equations. Phys. Lett. A 380(11–12), 1141–1150 (2016)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Immanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations