Waveguide Mode Interactions. Coupled Nonlinear Schrödinger Equations

  • Sergey LebleEmail author
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 109)


The waveguide modes, specified by a transverse variable profile, propagate with velocity determined by the joint matter–waveguide dispersion. Any nonlinearity will lead to mode interaction, and in the case of wavepackets this will be described approximately by the coupled nonlinear Schrödinger (CNS) equations. The theory and numerical solutions is presented below.


  1. 1.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, London, 1997)zbMATHGoogle Scholar
  2. 2.
    C.R. Menyuk, Nonlinear pulse propagation in birefringent optical fibers. IEEE J. Quantum Electron 23(2), 174–176 (1987)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    S.J. Garth, C. Pask, Nonlinear effects in elliptical-core few-mode optical fiber. J. Opt. Soc. Am. B 9, 243 (1992)CrossRefADSGoogle Scholar
  4. 4.
    Q. Chang, E. Jia, W. Sun, Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comp. Phys. 148, 397 (1999)CrossRefADSGoogle Scholar
  5. 5.
    M.S. Ismail, S.Z. Alamri, Highly accurate finite difference method for coupled nonlinear Schrödinger equation. Int. J. Comput. Math. 81, 333 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    F. Ivanauska, M. Radziunas, On convergence and stability of the explicit difference method for solution of nonlinear Schrödinger equations. SIAM J. Numer. Anal. 36, 1466 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    J. Sun, X. Gu, Z. Ma, Numerical study of the soliton waves of the coupled nonlinear Schrödinger system. Phys. D 196, 311 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Kurtinaitis, F. Ivanauskas, Finite difference solution methods for a system of the nonlinear Schrödinger equations. Nonlinear Anal. Model. Control 9, 247 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    L. Wu, DuFort-Frankel type methods for linear and nonlinear Schrödinger equations. SIAM J. Numer. Anal. 33, 1526 (1996)MathSciNetCrossRefGoogle Scholar
  10. 10.
    W. Dai, An unconditionally stable three-level explicit difference scheme for the Schrödinger equation with a variable coefficient. SIAM J. Numer. Anal. 29, 174 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    A.A. Halim, S.P. Kshevetskii, S.B. Leble, Approximate solution for Euler equations of stratified water via numerical solution of coupled KdV system. Int. J. Math. Math. Sci. 63, 3979 (2002)MathSciNetzbMATHGoogle Scholar
  12. 12.
    A.A. Halim, S.P. Kshevetskii, S.B. Leble, Numerical integration of a coupled Kortweg-de Vries system. Comp. Math. App. 45, 581 (2003)CrossRefGoogle Scholar
  13. 13.
    A.W. Snyder, W.R. Young, Modes of optical waveguides. J. Opt. Soc. Am. A 3, 297 (1978)CrossRefGoogle Scholar
  14. 14.
    S.B. Leble, B. Reichel, Mode interaction in multi-mode optical fibers with Kerr effect (2005), arxiv:physics/0502122
  15. 15.
    J.D. Hoffman, Numerical Methods for Engineers and Scientists, 2nd edn. Marcell Dekker (2001)Google Scholar
  16. 16.
    S.B. Leble, B. Reichel, On convergence and stability of a numerical scheme of coupled nonlinear Schrödinger equations. Comput. Math. Appl. 55, 745–759 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    K. Porsezian, Soliton models in resonant and nonresonant optical fibers. Pramana J. Phys. 57, 1003 (2001)CrossRefADSGoogle Scholar
  18. 18.
    P.V. Mamyshev, S.V. Chemikov, E.M. Dianov, Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines. IEEE J. QE 27, 2347 (1991)CrossRefGoogle Scholar
  19. 19.
    S. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons. The Inverse Scattering Method (Springer, Berlin, 1984)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Immanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations