Advertisement

Kinetics of Charges in Waveguides. Charge Transport

  • Sergey LebleEmail author
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 109)

Abstract

The main aim in this chapter is to link the transport parameters with the temperature and nanowaveguide dimensions . This is achieved by formulating the problem in such a way as to include the Fermi–Dirac distribution function (FDF)  as initial or boundary condition. The statement of the problem naturally implies that the geometry of conductors should possess cylindrical symmetry for nanowires, so that the dimension parameter is the radius, or specified for other interesting cases, for example a point contact for tunnel microscopy [1]. More complicated geometries are treated in [2].

References

  1. 1.
    K.D. Sattler, Handbook of Nanophysics: Principles and Methods (CRC Press, Boca Raton, 2010)Google Scholar
  2. 2.
    I.S. Lobanov, I.Y. Popov, Scattering by a junction of “zig-zag” and “armchair” nanotubes. Nanosyst.: Phys., Chem., Math. 3 (2), 6–28 (2012)Google Scholar
  3. 3.
    J. Heremans, C.M. Thrush, Y.-M. Lin, S. Cronin, Z. Zhang, M.S. Dresselhaus, J.F. Mansfield, Bismuth nanowire arrays: synthesis, galvanomagnetic properties. Phys. Rev. B 61, 29212930 (2000)CrossRefGoogle Scholar
  4. 4.
    K. Hong, F.Y. Yang, K. Liu, D.H. Reich, P.C. Searson, C.L. Chien, F.F. Balakirev, G.S. Boebinger, Giant positive magnetoresistance of Bi nanowire arrays in high magnetic fields. J. Appl. Phys. 85, 61846186 (1999). Part A4ADSCrossRefGoogle Scholar
  5. 5.
    Y.-M. Lin, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus, J.P. Heremans, Transport properties of Bi nanowire arrays. Appl. Phys. Lett. 76, 39443946 (2000)Google Scholar
  6. 6.
    Y.M. Gal’perin, Introduction to Modern Solid State Physics. FYS 448, Oslo (2009)Google Scholar
  7. 7.
    S. Botman, S. Leble, Bloch wave–ZRP scattering as a key element of solid state physics computation: 1D example TASK quarterly 20(2), 185–194 (2016); Electrical resistivity model for quasi-one-dimensional structures. arXiv:1611.09393 [cond-mat.mes-hall]
  8. 8.
    A. Buzdin, S. Leble: Lidar problem solution in double-scattering approximation VINITI N2536-80dep, pp. 126 (1980); Angl: arXiv:1112.3297v1 [math-ph]
  9. 9.
    M. Guarao, S. Leble: Modeling of X-ray attenuation via photon statistics evolution. TASK Q. 18(2), 187–203 (2014), arXiv:1412.0091
  10. 10.
    A. Kolmogoroff, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104, 415 (1931)MathSciNetCrossRefGoogle Scholar
  11. 11.
    A.M. Kolchuzhkin, V.V. Uchaikin, Introduction into the Theory of Particle Penetration through Matter (Atomizdat, Moscow, 1978). (in Russian)Google Scholar
  12. 12.
    S.B. Leble, Kolmogorov equation for Bloch electrons and electrical resistivity models for nanowires. Nanosyst.: Phys., Chem., Math. 8 (2), 247–259 (2017)Google Scholar
  13. 13.
    A. Krokhin, N.M. Makarov, V.A. Yampolsky, Theory of the surface scattering of electrons in metals with gently sloping surface irregularities. Sov. Phys.-JETP 72(2), 289–294 (1991)Google Scholar
  14. 14.
    N.M. Makarov, A.V. Moroz, V.A. Yampolsky, Classical and quantum size effects in electron conductivity of films with rough boundaries. Phys. Rev. B 52(8), 6087–6101 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    M.S. Dresselhaus, Solid state physics part I. Transport properties of solids. In: Springer Handbook of Nanotechnology. Lecture Notes, ed. by M.S. Dresselhaus et al. (Springer, Berlin, 2010), http://www.giovannibachelet.it/dresselhaus2001.pdf
  16. 16.
    R.B. Dingle, The electrical conductivity of thin wires. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 201 (1067), 545–560 (1950)Google Scholar
  17. 17.
    Y. Lin, X. Sun, M.S. Dresselhaus, Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Phys. Rev. B 62(7), 4610–4623 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    B.S. Pavlov, A.V. Strepetov, Exactly solvable model of electron scattering by an inhomogeneity in a thin conductor. Theor. Math. Phys. 90(2), 152–156 (1992)CrossRefGoogle Scholar
  19. 19.
    S.A. Botman, S.B. Leble, Electrical conductivity model for quasi-one-dimensional structures. Nanosyst.: Phys., Chem., Math. 8 (2), 231–235 (2017)Google Scholar
  20. 20.
    K. Fuchs, The conductivity of thin metallic films according to the electron theory of metals. Math. Proc. Camb. Philos. Soc. 34(1), 100–108 (1938)ADSCrossRefGoogle Scholar
  21. 21.
    A.V. Chaplik, M.V. Entin, Energy spectrum and electron mobility in a thin film with non-ideal boundary. Sov. J. Exp. Theor. Phys. 28(3), 514–517 (1969)ADSGoogle Scholar
  22. 22.
    S.A. Chivilikhin, V.V. Gusarov, I.Y. Popov, Charge pumping in nanotube filled with electrolyte. Chin. J. Phys. 56(5), 2531–2537 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    J. Kailasvuori, M.C. Lüffe, Quantum corrections in the Boltzmann conductivity of graphene and their sensitivity to the choice of formalism. J. Stat. Mech. P06024 (2010)Google Scholar
  24. 24.
    A.V. Manjirov, A.D. Polyanin, Reference Book on Integral Equation (Factorial Press, Rhode Island, 2000)Google Scholar
  25. 25.
    N. Ashcroft, N. Mermin, D. Wei, Solid State Physics, Revised edn. (Amazon Press, Seattle, 2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Immanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations