Skip to main content

Introduction

  • Chapter
  • First Online:
Waveguide Propagation of Nonlinear Waves

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 109))

  • 608 Accesses

Abstract

We shall first make some remarks about the history, physical applications, and general context of waves and waveguide propagation, developing what was said in [1]. This book presents the nonlinear evolution equations and the theory of wave interactions in waveguides (quasi-waveguides  ) that result from nonlinearity and an inhomogeneity in the propagation medium. The theoretical description of finite amplitude wave dynamics is relevant to problems in mathematical physics as well as geophysical hydrodynamics  [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.B. Leble, Waveguide Propagation of Nonlinear Waves in Stratified Media (in Russian) (Leningrad University Press, Leningrad, 1988). Extended Ed. in Springer, Berlin, 1990

    Google Scholar 

  2. V.A. Fock, The fundamental significance of approximate methods in theoretical physics. UFN 16(8), 1070 (1936)

    Google Scholar 

  3. L.S.G. Kovasznay, Turbulence in supersonic flow. J. Aero. Sci. 20, 657–682 (1953); B.-T. Chu, L.S.G. Kovasznay, Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3, 494–514 (1958)

    Google Scholar 

  4. J.K. Engelbrecht, V.E. Fridman, E.N. Pelinovsky, Nonlinear Evolution Equations, vol. 180, Pitman Research Notes in Mathematics (Longman, London, 1988)

    Google Scholar 

  5. J. Pedlosky, Geophysical Fluid Dynamics (Springer, Berlin, 1992)

    Google Scholar 

  6. R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris, Soliton and nonlinear wave equations. (Academic Press Inc, Cambridge, 1982). [Harcourt Brace Jovanovich Publishers]

    Google Scholar 

  7. V.E. Zakharov, S.M. Manakov, S.P. Novikov J.P. Pitaevski, Theory of Solitons. The Method of Inverse Problems (Nauka, Moscow, 1980) [English: Plenum, New York, 1984]

    Google Scholar 

  8. H. Segur, J. Hammack, J. Fluid Mech. 118, 285–304 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Hide, R.J. Mason, R.A. Plumb, J. Atmos. Sci. 34, 930–950 (1977)

    Article  ADS  Google Scholar 

  10. Y.D. Chashechkin, Waves, vortices and ligaments in fluid flows of different scales. Phys. Astron. Int. J. Review Article, Open Access 2(2) (2018)

    Article  ADS  Google Scholar 

  11. A.C. Scott, Active and Nonlinear Wave Propagation in Electronics (Wiley-Interscience, New York, 1970)

    Google Scholar 

  12. R.K. Bullough, P.J. Caudrey, J.C. Eilbeck, J.D. Gibbon, A general theory of self-induced transparency. Optoelectronics 6, 121–140 (1974)

    Google Scholar 

  13. L.F. Mollenauer, J.P. Gordon, Solitons in Optical Fibers. (Elsevier Academic Press, Cambridge, 2006). ISBN 0-12-504190-X

    Google Scholar 

  14. S.A. Akhmanov, B.A. Visloukh, A.S. Chirkin, Usp. Fiz. Nauk SSSR 149(3), 449–509 (1986)

    Article  Google Scholar 

  15. V.V. Belikovich, E.A. Benediktov, A.V. Tolmacheva et al., Investigation of the Ionosphere Using Artificial Periodic Inhomogeneities (IAP RAS, Nizhny Novgorod, 1999)

    Google Scholar 

  16. R.K. Bullough, P.J. Caudrey (eds.), Solitons (Springer, Berlin, 1980)

    Google Scholar 

  17. R. Dodd, A. Fordy, Phys. Lett. A 89, 168 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  18. B.G. Konopelchenko, Introduction to Multidimensional Integrable Equations: The Inverse Spectral Transform in 2+1 Dimensions (Springer, Berlin, 1992)

    Google Scholar 

  19. T. Schäfer, C.E. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media. Phys. D 196, 90–105 (2004)

    Article  MathSciNet  Google Scholar 

  20. D. Ampilogov, S. Leble, Directed electromagnetic wave propagation in 1D metamaterial: projecting operators method. Phys. Lett. A 380, 2271–2278 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Kuszner, S. Leble, Ultrashort opposite directed pulses dynamics with Kerr effect and polarization account. J. Phys. Soc. Jpn. 83, 034005 (2014)

    Article  ADS  Google Scholar 

  22. S. Leble, A. Perelomova, Dynamical Projector Method in Hydro- and Electrodynamics (CRC Press, Boca Raton, 2018)

    MATH  Google Scholar 

  23. S. Leble, Nonlinear waves in optical waveguides and soliton theory applications, in Optical Solitons. Theoretical and Experimental Challenges (Springer, Berlin, 2003), pp. 71–104 [ISBN 83-88007-03-3]

    Chapter  Google Scholar 

  24. T. Taniuti, C.C. Wei, J. Phys. Soc. Jpn. 24, 941–946 (1968)

    Article  ADS  Google Scholar 

  25. T. Taniuti, SuppI. Progr. Theor. Phys. 55, 1–35 (1974)

    Article  ADS  Google Scholar 

  26. K. Watanabe, T. Taniuti, J. Phys. Soc. Jpn. 42, 1397–1403 (1977)

    ADS  Google Scholar 

  27. Y. Kodama, T. Taniuti, J. Phys. Soc. Jpn. 45, 298–314; 47, 1706–1716 (1978)

    Google Scholar 

  28. V.P. Maslov, Resonance Processes In Wave Theory And Self-focusing (Moscow Institute of Electronic Engineering, 1983)

    Google Scholar 

  29. V.P. Maslov, Mathematical Aspects of Integral Optics (Moscow Institute of Electronic Engineering, 1983)

    Google Scholar 

  30. SYu. Dobrokhotov, V.P. Maslov, Soviet Science Review, vol. 3 (Overseas Publishing Association, Harwood, 1982), pp. 221–311

    Google Scholar 

  31. R. Grimshaw, Proc. Roy. Soc. Lond. A 368, 359–375 (1979)

    Article  ADS  Google Scholar 

  32. L.A. Ostrovsky, Nonlinear internal ocean waves, in Nonlinear Waves (Nauka, Moscow, 1979) pp. 292–323; Okeanologia USSR 18, 181–191 (1978)

    Google Scholar 

  33. L.A. Ostrovsky, E.N. Pelinovsky, Prikl. Mekh. Mat. USSR 38, 121–124 (1974)

    Google Scholar 

  34. Y. Miropolsky, Internal Ocean Wave Dynamics (Gidrometeoizdat, Leningrad, 1981)

    Google Scholar 

  35. S.B. Leble, Izv. Akad. Nauk SSSR, Fiz. Atm. Okean 20, 1199–1204 (1984)

    Google Scholar 

  36. A.A. Zaitsev, S.B. Leble, Theory of Nonlinear Waves (Kaliningrad University Press, Kaliningrad, 1984)

    Google Scholar 

  37. A. Maxworthy, L. Redekopp, P. Weldman, Icarus 33 (1978)

    Article  ADS  Google Scholar 

  38. P. Malanotte-Rizzoli, Adv. Geophys. 24, 147–224 (1982)

    Article  ADS  Google Scholar 

  39. R. Hirota, J. Satsuma, Phys. Lett. ASS 407–408 (1981)

    Google Scholar 

  40. S.P. Kshevetsky, S.B. Leble, Izv. Akad. Nauk SSSR, Fiz. Aun. Okean 21, 170–176 (1985)

    Google Scholar 

  41. S.P. Kshevetsky, S.B. Leble, In waves and diffraction, in Proceedings of the IX USSR Symposium, vol. 2, (Thilisi University Press, Tbilisi, 1985), pp. 57–59; Izv. Akad. Nauk: SSSR, Mekh. Zhidk. Gaza 3, 151–157 (1988)

    Google Scholar 

  42. A.V. Tur, V.V. Yanovsky, Preprint Charkov Phys-Tech. Inst. Akad. Nauk: UkSSR, No. 83–36 (1983)

    Google Scholar 

  43. A.V. Mikhailov, A.B. Shabat, Teor. Math. Phys. USSR 62(1), 47–65 (1985)

    Google Scholar 

  44. N.N. Bogolyubov, A.K. Prikarpatsky, Teor. Math. Phys. USSR 67(3), 410–425 (1986)

    Google Scholar 

  45. J. Boussinesq, Comptes Rend. 72, 755–759 (1871)

    Google Scholar 

  46. I. Satsuma, S. Takeno, N. Wadati, Recent developments in soliton theory. Suppl. Progr. Theor. Phys. 94 (1988)

    Google Scholar 

  47. V.P. Silin, Parametric Interactions (Nauka, Moscow, 1973)

    Google Scholar 

  48. M.V. Vinogradova, O.V. Rudenko, A.P. Sukhorukov, Wave Theory (Nauka, Moscow, 1979)

    Google Scholar 

  49. V.L. Ginzburg, A.A. Rukhadze, Waves in Magnetoactive Plasma (Nauka, Moscow, 1975)

    Google Scholar 

  50. A.A. Novikov, Application of the method of coupled waves to an analysis of nonresonance interaction. Radiophys. Quantum Electron. 19(5), 225–227 (1976)

    Article  ADS  Google Scholar 

  51. A.A. Novikov, The perturbation method and natural forms in nonlinear wave theory. Waves Diffr. 2, 66–69 (1981)

    Google Scholar 

  52. I. Vereshchagina, Interaction of modes in multidimensional medium with dispersion. M.Sc. Thesis, Kaliningrad State University, 1980 (Im. Kant Federal University from 2010)

    Google Scholar 

  53. F. Bessarab, S. Kshevetskij, S. Leble, On the acoustic–gravity wave interaction in atmosphere. Problems of nonlinear acoustics, in Proceedings of IUPAP, IUTAM Symposium on Nonlinear Acoustics, ed. by V.K. Kedrinskii, AN USSR, Siberian Division, Novosibirsk (1987)

    Google Scholar 

  54. C. Frenzen, I. Kevorkian, Wave Motion 7, 25–42 (1985)

    Article  MathSciNet  Google Scholar 

  55. M. Oikawa, N. Yajima, SuppI. Progr. Theor. Phys. 55, 36–51 (1974)

    Article  ADS  Google Scholar 

  56. A.I. Bobenko, V.B. Matveev, M.A. Salle, Dokl. Akad. Nauk SSSR 265, 1357–1360 (1982)

    MathSciNet  Google Scholar 

  57. V.D. Lipovsky, Izv. Akad. Nauk: SSSR, Fiz. Aun. Okean 21, 864–872 (1985)

    Google Scholar 

  58. O. Philips, Wave interactions–idea evolution, in Modern Hydrodynamics, J. Fluid Mech. (special issue) 106 (1981)

    Google Scholar 

  59. O.M. Phillips, The Dynamics of the Upper Ocean (Cambridge University Press, Cambridge, 1966)

    Google Scholar 

  60. G.B. Whitham, Proc. Roy. Soc. A 299, 6–25 (1967)

    Article  ADS  Google Scholar 

  61. T. Benjamin, J. Fluid Mech. 25, 241–270 (1966)

    Article  ADS  Google Scholar 

  62. H. Ono, J. Phys. Soc. Jpn. 39, 1082–1091 (1975)

    Article  ADS  Google Scholar 

  63. S.V. Levikov, Okeanologia SSSR 16, 968–974 (1976)

    MathSciNet  Google Scholar 

  64. R.J. Joseph, J. Phys. A 10, 1225–1227 (1977)

    Article  ADS  Google Scholar 

  65. V.B. Matveev, M.A. Salle, Dokl. Akad. Nauk: SSSR 261, 533–538 (1981)

    MathSciNet  Google Scholar 

  66. V.V. Belov, SYu. Dobrohotov, T.Ya. Tudorovskiy, Operator separation of variables for adiabatic problems in quantum and wave mechanics. J. Eng. Math. 55(1–4), 183–237 (2006)

    Article  MathSciNet  Google Scholar 

  67. V.M. Babich, V.S. Buldyrev, I.A. Molotkov, Space-Time Ray Method: Linear and Nonlinear Waves (Leningrad University Press, Leningrad, 1985)

    Google Scholar 

  68. Y. Kodama, A. Hasegawa, IEEE J. Quantum Elect. 23(5), 510–524 (1987)

    Article  ADS  Google Scholar 

  69. D.A. Vereschagin, S.B. Leble, Izv. Akad. Nauk: SSSR Fiz. Aun. Okean 6, 815–820 (1987)

    Google Scholar 

  70. J.M. Moroz, I. Brindley, Proc. Roy. Soc. Lond. A 377, 379–404 (1981)

    Article  ADS  Google Scholar 

  71. E.D. Belokolos, A.I. Bobenko, V.B. Matveev, V.Z. Enolsky, Usp. Mat. Nauk: SSSR 41, No. 2 (248), 3–42 (1986)

    Google Scholar 

  72. B.A. Dubrovin, Usp. MatNauk: SSSR 36(2), 11–80 (1981)

    Google Scholar 

  73. H. Segur, A. Finkel, Stud. AppI. Math. 73, 183–220 (1985)

    Article  Google Scholar 

  74. S.B. Leble, Pure Appl. Geophys. 127(2/3), 491–527 (1988)

    Article  ADS  Google Scholar 

  75. G. Agarwal et al., Light, the universe and everything-12 Herculean tasks for quantum cowboys and black diamond skiers. J. Mod. Opt. 65(11), 1261–1308 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  76. E. Doktorov, S.B. Leble, Dressing Method in Mathematical Physics (Springer, Berlin, 2007) [ISBN 83-88007-03-3]

    Google Scholar 

  77. A. Perelomova, Acoustic field and the entropy mode induced by it in a waveguide filled with some non-equilibrium gases. Cent. Eur. J. Phys. 11(3), 380–386 (2013)

    MathSciNet  Google Scholar 

  78. A. Perelomova, Magnetoacoustic heating in a quasi-isentropic magnetic gas. Phys. Plasmas 25, 042116 (2018). https://doi.org/10.1063/1.5025030

    Article  ADS  Google Scholar 

  79. I. Yu. Popov, S.L. Popova, The extension theory and resonances for a quantum waveguide. Phys. Lett. A 173, 484–488 (1993)

    Article  ADS  Google Scholar 

  80. I. Yu. Popov, S.L. Popova, Zero-width slit model and resonances in mesoscopic systems. Europhys. Lett. 24(5), 373–377 (1993)

    Article  ADS  Google Scholar 

  81. F. Qin, H.-X. Peng, Ferromagnetic microwires enabled multifunctional composite materials. Prog. Mater. Sci. 58(2), 183–259 (2013)

    Article  Google Scholar 

  82. M. Lakshmanan, K. Nakamura, Landau-Lifshitz equation of ferromagnetism: exact treatment of the Gilbert damping. Phys. Rev. Lett. 53, 2497–2499 (1984)

    Article  ADS  Google Scholar 

  83. L.V. Panina, M. Ipatov, V. Zhukova, A. Zhukov, Domain wall propagation in Fe-rich amorphous microwires. Phys. B Condens. Matter 407, 1442–1445 (2012)

    Article  ADS  Google Scholar 

  84. B. Hu, X.R. Wang, Instability of walker propagating domain wall in magnetic nanowires. PRL 111, 027205 (2013)

    Article  ADS  Google Scholar 

  85. A. Janutka, P. Gawronski, Structure of magnetic domain wall in cylindrical microwire. IEEE Trans. Magn. 51(5), 1–6 (2015)

    Article  Google Scholar 

  86. M. Vereshchagin, Structure of domain wall in cylindrical amorphous microwire. Phys. B: Condens. Matter 549, 91–93 (2018)

    Article  ADS  Google Scholar 

  87. A. Kolmogoroff, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104(1), 415–458 (1931)

    Article  MathSciNet  Google Scholar 

  88. S.A. Chivilikhin, V.V. Gusarov, I.Y. Popov, Charge pumping in nanotube filled with electrolyte. Chin. J. Phys. 56(5), 2531–2537 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Leble .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leble, S. (2019). Introduction. In: Waveguide Propagation of Nonlinear Waves. Springer Series on Atomic, Optical, and Plasma Physics, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-030-22652-7_1

Download citation

Publish with us

Policies and ethics