• Sergey LebleEmail author
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 109)


We shall first make some remarks about the history, physical applications, and general context of waves and waveguide propagation, developing what was said in [1]. This book presents the nonlinear evolution equations and the theory of wave interactions in waveguides (quasi-waveguides  ) that result from nonlinearity and an inhomogeneity in the propagation medium. The theoretical description of finite amplitude wave dynamics is relevant to problems in mathematical physics as well as geophysical hydrodynamics  [2, 3].


  1. 1.
    S.B. Leble, Waveguide Propagation of Nonlinear Waves in Stratified Media (in Russian) (Leningrad University Press, Leningrad, 1988). Extended Ed. in Springer, Berlin, 1990Google Scholar
  2. 2.
    V.A. Fock, The fundamental significance of approximate methods in theoretical physics. UFN 16(8), 1070 (1936)Google Scholar
  3. 3.
    L.S.G. Kovasznay, Turbulence in supersonic flow. J. Aero. Sci. 20, 657–682 (1953); B.-T. Chu, L.S.G. Kovasznay, Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3, 494–514 (1958)Google Scholar
  4. 4.
    J.K. Engelbrecht, V.E. Fridman, E.N. Pelinovsky, Nonlinear Evolution Equations, vol. 180, Pitman Research Notes in Mathematics (Longman, London, 1988)Google Scholar
  5. 5.
    J. Pedlosky, Geophysical Fluid Dynamics (Springer, Berlin, 1992)Google Scholar
  6. 6.
    R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris, Soliton and nonlinear wave equations. (Academic Press Inc, Cambridge, 1982). [Harcourt Brace Jovanovich Publishers]Google Scholar
  7. 7.
    V.E. Zakharov, S.M. Manakov, S.P. Novikov J.P. Pitaevski, Theory of Solitons. The Method of Inverse Problems (Nauka, Moscow, 1980) [English: Plenum, New York, 1984]Google Scholar
  8. 8.
    H. Segur, J. Hammack, J. Fluid Mech. 118, 285–304 (1982)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Hide, R.J. Mason, R.A. Plumb, J. Atmos. Sci. 34, 930–950 (1977)ADSCrossRefGoogle Scholar
  10. 10.
    Y.D. Chashechkin, Waves, vortices and ligaments in fluid flows of different scales. Phys. Astron. Int. J. Review Article, Open Access 2(2) (2018)ADSCrossRefGoogle Scholar
  11. 11.
    A.C. Scott, Active and Nonlinear Wave Propagation in Electronics (Wiley-Interscience, New York, 1970)Google Scholar
  12. 12.
    R.K. Bullough, P.J. Caudrey, J.C. Eilbeck, J.D. Gibbon, A general theory of self-induced transparency. Optoelectronics 6, 121–140 (1974)Google Scholar
  13. 13.
    L.F. Mollenauer, J.P. Gordon, Solitons in Optical Fibers. (Elsevier Academic Press, Cambridge, 2006). ISBN 0-12-504190-XGoogle Scholar
  14. 14.
    S.A. Akhmanov, B.A. Visloukh, A.S. Chirkin, Usp. Fiz. Nauk SSSR 149(3), 449–509 (1986)CrossRefGoogle Scholar
  15. 15.
    V.V. Belikovich, E.A. Benediktov, A.V. Tolmacheva et al., Investigation of the Ionosphere Using Artificial Periodic Inhomogeneities (IAP RAS, Nizhny Novgorod, 1999)Google Scholar
  16. 16.
    R.K. Bullough, P.J. Caudrey (eds.), Solitons (Springer, Berlin, 1980)Google Scholar
  17. 17.
    R. Dodd, A. Fordy, Phys. Lett. A 89, 168 (1982)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    B.G. Konopelchenko, Introduction to Multidimensional Integrable Equations: The Inverse Spectral Transform in 2+1 Dimensions (Springer, Berlin, 1992)Google Scholar
  19. 19.
    T. Schäfer, C.E. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media. Phys. D 196, 90–105 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    D. Ampilogov, S. Leble, Directed electromagnetic wave propagation in 1D metamaterial: projecting operators method. Phys. Lett. A 380, 2271–2278 (2016)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Kuszner, S. Leble, Ultrashort opposite directed pulses dynamics with Kerr effect and polarization account. J. Phys. Soc. Jpn. 83, 034005 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    S. Leble, A. Perelomova, Dynamical Projector Method in Hydro- and Electrodynamics (CRC Press, Boca Raton, 2018)zbMATHGoogle Scholar
  23. 23.
    S. Leble, Nonlinear waves in optical waveguides and soliton theory applications, in Optical Solitons. Theoretical and Experimental Challenges (Springer, Berlin, 2003), pp. 71–104 [ISBN 83-88007-03-3]CrossRefGoogle Scholar
  24. 24.
    T. Taniuti, C.C. Wei, J. Phys. Soc. Jpn. 24, 941–946 (1968)ADSCrossRefGoogle Scholar
  25. 25.
    T. Taniuti, SuppI. Progr. Theor. Phys. 55, 1–35 (1974)ADSCrossRefGoogle Scholar
  26. 26.
    K. Watanabe, T. Taniuti, J. Phys. Soc. Jpn. 42, 1397–1403 (1977)ADSGoogle Scholar
  27. 27.
    Y. Kodama, T. Taniuti, J. Phys. Soc. Jpn. 45, 298–314; 47, 1706–1716 (1978)Google Scholar
  28. 28.
    V.P. Maslov, Resonance Processes In Wave Theory And Self-focusing (Moscow Institute of Electronic Engineering, 1983)Google Scholar
  29. 29.
    V.P. Maslov, Mathematical Aspects of Integral Optics (Moscow Institute of Electronic Engineering, 1983)Google Scholar
  30. 30.
    SYu. Dobrokhotov, V.P. Maslov, Soviet Science Review, vol. 3 (Overseas Publishing Association, Harwood, 1982), pp. 221–311Google Scholar
  31. 31.
    R. Grimshaw, Proc. Roy. Soc. Lond. A 368, 359–375 (1979)ADSCrossRefGoogle Scholar
  32. 32.
    L.A. Ostrovsky, Nonlinear internal ocean waves, in Nonlinear Waves (Nauka, Moscow, 1979) pp. 292–323; Okeanologia USSR 18, 181–191 (1978)Google Scholar
  33. 33.
    L.A. Ostrovsky, E.N. Pelinovsky, Prikl. Mekh. Mat. USSR 38, 121–124 (1974)Google Scholar
  34. 34.
    Y. Miropolsky, Internal Ocean Wave Dynamics (Gidrometeoizdat, Leningrad, 1981)Google Scholar
  35. 35.
    S.B. Leble, Izv. Akad. Nauk SSSR, Fiz. Atm. Okean 20, 1199–1204 (1984)Google Scholar
  36. 36.
    A.A. Zaitsev, S.B. Leble, Theory of Nonlinear Waves (Kaliningrad University Press, Kaliningrad, 1984)Google Scholar
  37. 37.
    A. Maxworthy, L. Redekopp, P. Weldman, Icarus 33 (1978)ADSCrossRefGoogle Scholar
  38. 38.
    P. Malanotte-Rizzoli, Adv. Geophys. 24, 147–224 (1982)ADSCrossRefGoogle Scholar
  39. 39.
    R. Hirota, J. Satsuma, Phys. Lett. ASS 407–408 (1981)Google Scholar
  40. 40.
    S.P. Kshevetsky, S.B. Leble, Izv. Akad. Nauk SSSR, Fiz. Aun. Okean 21, 170–176 (1985)Google Scholar
  41. 41.
    S.P. Kshevetsky, S.B. Leble, In waves and diffraction, in Proceedings of the IX USSR Symposium, vol. 2, (Thilisi University Press, Tbilisi, 1985), pp. 57–59; Izv. Akad. Nauk: SSSR, Mekh. Zhidk. Gaza 3, 151–157 (1988)Google Scholar
  42. 42.
    A.V. Tur, V.V. Yanovsky, Preprint Charkov Phys-Tech. Inst. Akad. Nauk: UkSSR, No. 83–36 (1983)Google Scholar
  43. 43.
    A.V. Mikhailov, A.B. Shabat, Teor. Math. Phys. USSR 62(1), 47–65 (1985)Google Scholar
  44. 44.
    N.N. Bogolyubov, A.K. Prikarpatsky, Teor. Math. Phys. USSR 67(3), 410–425 (1986)Google Scholar
  45. 45.
    J. Boussinesq, Comptes Rend. 72, 755–759 (1871)Google Scholar
  46. 46.
    I. Satsuma, S. Takeno, N. Wadati, Recent developments in soliton theory. Suppl. Progr. Theor. Phys. 94 (1988)Google Scholar
  47. 47.
    V.P. Silin, Parametric Interactions (Nauka, Moscow, 1973)Google Scholar
  48. 48.
    M.V. Vinogradova, O.V. Rudenko, A.P. Sukhorukov, Wave Theory (Nauka, Moscow, 1979)Google Scholar
  49. 49.
    V.L. Ginzburg, A.A. Rukhadze, Waves in Magnetoactive Plasma (Nauka, Moscow, 1975)Google Scholar
  50. 50.
    A.A. Novikov, Application of the method of coupled waves to an analysis of nonresonance interaction. Radiophys. Quantum Electron. 19(5), 225–227 (1976)ADSCrossRefGoogle Scholar
  51. 51.
    A.A. Novikov, The perturbation method and natural forms in nonlinear wave theory. Waves Diffr. 2, 66–69 (1981)Google Scholar
  52. 52.
    I. Vereshchagina, Interaction of modes in multidimensional medium with dispersion. M.Sc. Thesis, Kaliningrad State University, 1980 (Im. Kant Federal University from 2010)Google Scholar
  53. 53.
    F. Bessarab, S. Kshevetskij, S. Leble, On the acoustic–gravity wave interaction in atmosphere. Problems of nonlinear acoustics, in Proceedings of IUPAP, IUTAM Symposium on Nonlinear Acoustics, ed. by V.K. Kedrinskii, AN USSR, Siberian Division, Novosibirsk (1987)Google Scholar
  54. 54.
    C. Frenzen, I. Kevorkian, Wave Motion 7, 25–42 (1985)MathSciNetCrossRefGoogle Scholar
  55. 55.
    M. Oikawa, N. Yajima, SuppI. Progr. Theor. Phys. 55, 36–51 (1974)ADSCrossRefGoogle Scholar
  56. 56.
    A.I. Bobenko, V.B. Matveev, M.A. Salle, Dokl. Akad. Nauk SSSR 265, 1357–1360 (1982)MathSciNetGoogle Scholar
  57. 57.
    V.D. Lipovsky, Izv. Akad. Nauk: SSSR, Fiz. Aun. Okean 21, 864–872 (1985)Google Scholar
  58. 58.
    O. Philips, Wave interactions–idea evolution, in Modern Hydrodynamics, J. Fluid Mech. (special issue) 106 (1981)Google Scholar
  59. 59.
    O.M. Phillips, The Dynamics of the Upper Ocean (Cambridge University Press, Cambridge, 1966)Google Scholar
  60. 60.
    G.B. Whitham, Proc. Roy. Soc. A 299, 6–25 (1967)ADSCrossRefGoogle Scholar
  61. 61.
    T. Benjamin, J. Fluid Mech. 25, 241–270 (1966)ADSCrossRefGoogle Scholar
  62. 62.
    H. Ono, J. Phys. Soc. Jpn. 39, 1082–1091 (1975)ADSCrossRefGoogle Scholar
  63. 63.
    S.V. Levikov, Okeanologia SSSR 16, 968–974 (1976)MathSciNetGoogle Scholar
  64. 64.
    R.J. Joseph, J. Phys. A 10, 1225–1227 (1977)ADSCrossRefGoogle Scholar
  65. 65.
    V.B. Matveev, M.A. Salle, Dokl. Akad. Nauk: SSSR 261, 533–538 (1981)MathSciNetGoogle Scholar
  66. 66.
    V.V. Belov, SYu. Dobrohotov, T.Ya. Tudorovskiy, Operator separation of variables for adiabatic problems in quantum and wave mechanics. J. Eng. Math. 55(1–4), 183–237 (2006)MathSciNetCrossRefGoogle Scholar
  67. 67.
    V.M. Babich, V.S. Buldyrev, I.A. Molotkov, Space-Time Ray Method: Linear and Nonlinear Waves (Leningrad University Press, Leningrad, 1985)Google Scholar
  68. 68.
    Y. Kodama, A. Hasegawa, IEEE J. Quantum Elect. 23(5), 510–524 (1987)ADSCrossRefGoogle Scholar
  69. 69.
    D.A. Vereschagin, S.B. Leble, Izv. Akad. Nauk: SSSR Fiz. Aun. Okean 6, 815–820 (1987)Google Scholar
  70. 70.
    J.M. Moroz, I. Brindley, Proc. Roy. Soc. Lond. A 377, 379–404 (1981)ADSCrossRefGoogle Scholar
  71. 71.
    E.D. Belokolos, A.I. Bobenko, V.B. Matveev, V.Z. Enolsky, Usp. Mat. Nauk: SSSR 41, No. 2 (248), 3–42 (1986)Google Scholar
  72. 72.
    B.A. Dubrovin, Usp. MatNauk: SSSR 36(2), 11–80 (1981)Google Scholar
  73. 73.
    H. Segur, A. Finkel, Stud. AppI. Math. 73, 183–220 (1985)CrossRefGoogle Scholar
  74. 74.
    S.B. Leble, Pure Appl. Geophys. 127(2/3), 491–527 (1988)ADSCrossRefGoogle Scholar
  75. 75.
    G. Agarwal et al., Light, the universe and everything-12 Herculean tasks for quantum cowboys and black diamond skiers. J. Mod. Opt. 65(11), 1261–1308 (2018)ADSMathSciNetCrossRefGoogle Scholar
  76. 76.
    E. Doktorov, S.B. Leble, Dressing Method in Mathematical Physics (Springer, Berlin, 2007) [ISBN 83-88007-03-3]Google Scholar
  77. 77.
    A. Perelomova, Acoustic field and the entropy mode induced by it in a waveguide filled with some non-equilibrium gases. Cent. Eur. J. Phys. 11(3), 380–386 (2013)MathSciNetGoogle Scholar
  78. 78.
    A. Perelomova, Magnetoacoustic heating in a quasi-isentropic magnetic gas. Phys. Plasmas 25, 042116 (2018). Scholar
  79. 79.
    I. Yu. Popov, S.L. Popova, The extension theory and resonances for a quantum waveguide. Phys. Lett. A 173, 484–488 (1993)ADSCrossRefGoogle Scholar
  80. 80.
    I. Yu. Popov, S.L. Popova, Zero-width slit model and resonances in mesoscopic systems. Europhys. Lett. 24(5), 373–377 (1993)ADSCrossRefGoogle Scholar
  81. 81.
    F. Qin, H.-X. Peng, Ferromagnetic microwires enabled multifunctional composite materials. Prog. Mater. Sci. 58(2), 183–259 (2013)CrossRefGoogle Scholar
  82. 82.
    M. Lakshmanan, K. Nakamura, Landau-Lifshitz equation of ferromagnetism: exact treatment of the Gilbert damping. Phys. Rev. Lett. 53, 2497–2499 (1984)ADSCrossRefGoogle Scholar
  83. 83.
    L.V. Panina, M. Ipatov, V. Zhukova, A. Zhukov, Domain wall propagation in Fe-rich amorphous microwires. Phys. B Condens. Matter 407, 1442–1445 (2012)ADSCrossRefGoogle Scholar
  84. 84.
    B. Hu, X.R. Wang, Instability of walker propagating domain wall in magnetic nanowires. PRL 111, 027205 (2013)ADSCrossRefGoogle Scholar
  85. 85.
    A. Janutka, P. Gawronski, Structure of magnetic domain wall in cylindrical microwire. IEEE Trans. Magn. 51(5), 1–6 (2015)CrossRefGoogle Scholar
  86. 86.
    M. Vereshchagin, Structure of domain wall in cylindrical amorphous microwire. Phys. B: Condens. Matter 549, 91–93 (2018)ADSCrossRefGoogle Scholar
  87. 87.
    A. Kolmogoroff, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104(1), 415–458 (1931)MathSciNetCrossRefGoogle Scholar
  88. 88.
    S.A. Chivilikhin, V.V. Gusarov, I.Y. Popov, Charge pumping in nanotube filled with electrolyte. Chin. J. Phys. 56(5), 2531–2537 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Immanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations