Possible Research Directions

  • Vesna Todorčević


We have already mentioned that Pavlović made a deep and detailed analysis of the boundary values of harmonic quasiconformal mappings of the unit disk \(\mathbb {D}\) by proving the Theorem 7.1.


  1. 15.
    M. Arsenović, V. Božin, V. Manojlović, Moduli of continuity of harmonic quasiregular mappings in \(\mathbf {\mathbb B}^n\). Potential Anal. 34(3), 283–291 (2011)Google Scholar
  2. 20.
    K. Astala, F.W. Gehring, Injectivity, the BMO norm and the universal Teichmüller space. J. Anal. Math. 46, 16–57 (1986)CrossRefGoogle Scholar
  3. 22.
    K. Astala, T. Iwaniec, G.J. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (Princeton University Press, Princeton, 2009)zbMATHGoogle Scholar
  4. 28.
    M. Bonk, O. Schramm, Embeddings of Gromov hyperbolic spaces. Geom. Funct. Anal. 10(2), 266–306 (2000)MathSciNetCrossRefGoogle Scholar
  5. 29.
    M. Bonk, J. Heinonen, P. Koskela, Uniformizing Gromov Hyperbolic Spaces. Astérisque, vol. 270 (American Mathematical Society, Providence, 2001)Google Scholar
  6. 47.
    J.B. Garnett, D.E. Marshall, Harmonic Measure (Cambridge University Press, Cambridge, 2005)CrossRefGoogle Scholar
  7. 53.
    F.W. Gehring, B.G. Osgood, Uniform domains and the quasihyperbolic metric. J. Anal. Math. 36, 50–74 (1979)MathSciNetCrossRefGoogle Scholar
  8. 72.
    P.W. Jones, Extension domains for BMO. Indiana Univ. Math. J. 29, 41–66 (1980)MathSciNetCrossRefGoogle Scholar
  9. 76.
    D. Kalaj, A priori estimate of gradient of a solution to certain differential inequality and quasiconformal mappings. J. Anal. Math. 119, 63–88 (2013)MathSciNetCrossRefGoogle Scholar
  10. 77.
    D. Kalaj, Muckenhoupt weights and Lindelöf theorem for harmonic mappings. Adv. Math. 280, 301–321 (2015)MathSciNetCrossRefGoogle Scholar
  11. 79.
    D. Kalaj, M. Pavlović, Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane. Ann. Acad. Sci. Fenn. Math. 30(1), 159–165 (2005)MathSciNetzbMATHGoogle Scholar
  12. 91.
    P. Koskela, P. Lammi, V. Manojlović, Gromov hyperbolicity and quasihyperbolic geodesics. Ann. Sci. Éc. Norm. Supér. 47(5), 975–990 (2014)MathSciNetCrossRefGoogle Scholar
  13. 96.
    P. Li, L.F. Tam, Uniqueness and regularity of proper harmonic maps. Ann. Math. 137(1), 167–201 (1993)MathSciNetCrossRefGoogle Scholar
  14. 99.
    V. Manojlović, Bi-Lipschicity of quasiconformal harmonic mappings in the plane. Filomat 23(1), 85–89 (2009)MathSciNetCrossRefGoogle Scholar
  15. 106.
    L. Marius, V. Marković, Heat flows on hyperbolic spaces. J. Differ. Geom. 108(3), 495–529 (2018)MathSciNetCrossRefGoogle Scholar
  16. 107.
    V. Marković, Harmonic maps between 3-dimensional hyperbolic spaces. Invent. Math. 199(3), 921–951 (2015)MathSciNetCrossRefGoogle Scholar
  17. 108.
    V. Marković, Harmonic maps and Schoen conjecture. J. Am. Math. Soc. 30(3), 799–817 (2017)MathSciNetCrossRefGoogle Scholar
  18. 112.
    O. Martio, J. Sarvas, Injectivity theorems in plane and space. Ann. Acad. Sci. Fenn. Math. Ser. A I 4(2), 383–401 (1979)MathSciNetCrossRefGoogle Scholar
  19. 118.
    M. Mateljević, M. Vuorinen, On harmonic quasiconformal quasi-isometries. J. Inequal. Appl. 2010, 178732, 19 pp. (2010)Google Scholar
  20. 123.
    M. Pavlović, Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk. Ann. Acad. Sci. Fenn. Math. 27(2), 365–372 (2002)MathSciNetzbMATHGoogle Scholar
  21. 127.
    Ch. Pommerenke, Boundary Behavior of Conformal Maps. Fundamental Principles of Mathematical Sciences, vol. 299 (Springer, Berlin, 1992)Google Scholar
  22. 156.
    J. Väisälä, Gromov hyperbolic spaces. Expo. Math. 23(3), 187–231 (2005)MathSciNetCrossRefGoogle Scholar
  23. 166.
    M. Zinsmeister, Conformal representation and almost Lipschitz curves.Ann. Inst. Fourier 34(2), 29–44 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vesna Todorčević
    • 1
    • 2
  1. 1.Faculty of Organizational SciencesUniversity of BelgradeBelgradeSerbia
  2. 2.Mathematical InstituteSerbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations