Quasi-Nearly Subharmonic Functions and QC Mappings

  • Vesna Todorčević


Let G be a domain in \(\mathbb {R}^n,\) \(f: G \to \mathbb {R}^n\) a harmonic map, and \(\mathcal {A}\) a class of self-homeomorphisms of G. We study in this chapter what can be said about the functions of the form \(f \circ h, h \in \mathcal {A}\). For example, we show that if n = 2 and \(\mathcal {A}\) is the class of conformal maps, then the functions in this class are also harmonic. However, if \(\mathcal {A}\) is the class of harmonic maps, or quasiconformal harmonic maps, this statement is no longer true.


  1. 3.
    P. Ahern, J. Bruna, Maximal and area integral characterization of Hardy-Sobolev spaces in the unit ball of \(\mathbb C^n\). Rev. Mat. Iberoamericana 4(1), 123–153 (1988)Google Scholar
  2. 18.
    K. Astala, A remark on quasiconformal mappings and BMO-functions. Mich. Math. J. 30(2), 209–212 (1983)MathSciNetCrossRefGoogle Scholar
  3. 35.
    R.R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals. Stud. Math. 51, 241–250 (1974)MathSciNetCrossRefGoogle Scholar
  4. 36.
    D. Cruz-Uribe, The minimal operator and the geometric maximal operator in \(\mathbb R^n\). Stud. Math. 144(1), 1–37 (2001)Google Scholar
  5. 37.
    O. Dovgoshey, J. Riihentaus, Bi-Lipschitz mappings and quasinearly subharmonic functions. Int. J. Math. Math. Sci. 2010, 382179, 8 pp. (2010)Google Scholar
  6. 38.
    O. Dovgoshey, J. Riihentaus, On quasinearly subharmonic functions. Lobachevskii J. Math. 38(2), 245–254 (2017)MathSciNetCrossRefGoogle Scholar
  7. 41.
    P. Duren, Univalent Functions. Fundamental Principles of Mathematical Sciences, vol. 259 (Springer, New York, 1983)Google Scholar
  8. 44.
    C. Fefferman, E.M. Stein, H p-spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)MathSciNetCrossRefGoogle Scholar
  9. 46.
    J.B. Garnett, Bounded Analytic Functions (Academic, New York, 1981)zbMATHGoogle Scholar
  10. 57.
    G.H. Hardy, J.E. Littlewood, Some properties of conjugate functions. J. Reine Angew. Math. 167, 405–423 (1933)MathSciNetzbMATHGoogle Scholar
  11. 62.
    J. Heinonen, P. Koskela, Definitions of quasiconformality. Invent. Math. 120(1), 61–79 (1995)MathSciNetCrossRefGoogle Scholar
  12. 63.
    J. Heinonen, P. Koskela, Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type. Math. Scand. 77, 251–271 (1995)MathSciNetCrossRefGoogle Scholar
  13. 64.
    J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs (Oxford University Press, New York, 1993)zbMATHGoogle Scholar
  14. 66.
    M. Hervé, Analytic and Plurisubharmonic Functions in Finite and Infinite Dimensional Spaces. Lecture Notes in Mathematics, vol. 198 (Springer, Berlin, 1971)CrossRefGoogle Scholar
  15. 69.
    T. Iwaniec, p-harmonic tensors and quasiregular mappings. Ann. Math. 136(3), 589–624 (1992)MathSciNetCrossRefGoogle Scholar
  16. 87.
    V. Kojić, Quasi-nearly subharmonic functions and conformal mappings. Filomat 21(2), 243–249 (2007)MathSciNetCrossRefGoogle Scholar
  17. 89.
    P. Koskela, Lectures on Quasiconformal and Quasisymmetric Mappings (University of Jyväskylä, Jyväskylä, 2009)Google Scholar
  18. 90.
    P. Koskela, V. Manojlović, Quasi-nearly subharmonic functions and quasiconformal mappings. Potential Anal. 37(2), 187–196 (2012)MathSciNetCrossRefGoogle Scholar
  19. 122.
    M. Pavlović, On subharmonic behaviour and oscillation of functions on balls in \(\mathbb R^n\). Publ. Inst. Math. 55, 18–22 (1994)Google Scholar
  20. 125.
    M. Pavlović, J. Riihentaus, Classes of quasi-nearly subharmonic functions. Potential Anal. 29(1), 89–104 (2008)MathSciNetCrossRefGoogle Scholar
  21. 131.
    H.M. Reimann, Functions of bounded mean oscillation and quasiconformal mappings. Comment. Math. Helv. 49, 260–276 (1974)MathSciNetCrossRefGoogle Scholar
  22. 133.
    S. Rickman, Quasiregular Mappings. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26 (Springer, Berlin, 1993)Google Scholar
  23. 134.
    J. Riihentaus, On theorem of Avanssian-Arsove. Expo. Math. 7, 69–72 (1989)MathSciNetzbMATHGoogle Scholar
  24. 135.
    J. Riihentaus, Subharmonic functions: non-tangential and tangential boundary behavior, in Function Spaces, Differential Operators and Non-linear Analysis (Academy of Sciences Czech Republic Institute of Mathematics, Prague, 2000), pp. 229–238zbMATHGoogle Scholar
  25. 136.
    J. Riihentaus, A generalized mean value inequality for subharmonic functions. Expo. Math. 19(2), 187–190 (2001)MathSciNetCrossRefGoogle Scholar
  26. 148.
    S.G. Staples, Maximal functions, A measures and quasiconformal maps. Proc. Am. Math. Soc. 113(3), 689–700 (1991)MathSciNetzbMATHGoogle Scholar
  27. 149.
    S.G. Staples, Doubling measures and quasiconformal maps. Comment. Math. Helv. 67, 119–128 (1992)MathSciNetCrossRefGoogle Scholar
  28. 153.
    V. Todorčević, Subharmonic behavior and quasiconformal mappings. Anal. Math. Phys.
  29. 154.
    A. Uchiyama, Weight functions of the class (A ) and quasi-conformal mappings. Proc. Jpn. Acad. 51, 811–814 (1975)MathSciNetzbMATHGoogle Scholar
  30. 165.
    W.P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics, vol. 120 (Springer, New York, 1989)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vesna Todorčević
    • 1
    • 2
  1. 1.Faculty of Organizational SciencesUniversity of BelgradeBelgradeSerbia
  2. 2.Mathematical InstituteSerbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations