Bi-Lipschitz Property of HQC Mappings
Chapter
First Online:
- 180 Downloads
Abstract
The inverse of a K-quasiconformal homeomorphism is also K-quasiconformal. By the Schwarz lemma for K-quasiconformal mappings we know that both mappings are Hölder continuous in the Euclidean metric with exponent K1∕(1−n), and the Gehring–Osgood result yields the same conclusion in the quasihyperbolic metric. The class of harmonic K-quasiconformal interpolates between the classes of conformal maps and general quasiconformal maps. In this chapter we study the modulus of continuity of harmonic quasiconformal mappings relative to the quasihyperbolic metric and prove that both the mapping and its inverse are Lipschitz-continuous.
References
- 15.M. Arsenović, V. Božin, V. Manojlović, Moduli of continuity of harmonic quasiregular mappings in \(\mathbf {\mathbb B}^n\). Potential Anal. 34(3), 283–291 (2011)Google Scholar
- 19.K. Astala, F.W. Gehring, Quasiconformal analogues of theorems of Koebe and Hardy-Littlewood. Mich. Math. J. 32(1), 99–107 (1985)MathSciNetCrossRefGoogle Scholar
- 21.K. Astala, V. Manojlović, On Pavlović’s theorem in space. Potential Anal. 43(3), 361–370 (2015)MathSciNetCrossRefGoogle Scholar
- 23.S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory. Graduate Texts in Mathematics, vol. 137 (Springer, New York, 1992)CrossRefGoogle Scholar
- 42.P. Duren, Harmonic Mappings in the Plane (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
- 47.J.B. Garnett, D.E. Marshall, Harmonic Measure (Cambridge University Press, Cambridge, 2005)CrossRefGoogle Scholar
- 50.F.W. Gehring, The L p-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)MathSciNetCrossRefGoogle Scholar
- 53.F.W. Gehring, B.G. Osgood, Uniform domains and the quasihyperbolic metric. J. Anal. Math. 36, 50–74 (1979)MathSciNetCrossRefGoogle Scholar
- 55.D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, Berlin, 1998)zbMATHGoogle Scholar
- 56.S. Gleason, T. Wolff, Lewy’s harmonic gradient maps in higher dimensions. Commun. Partial Differ. Equ. 16(12), 1925–1968 (1991)MathSciNetCrossRefGoogle Scholar
- 64.J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs (Oxford University Press, New York, 1993)zbMATHGoogle Scholar
- 65.S. Hencl, P. Koskela, Lectures on Mappings of Finite Distortion. Lecture Notes in Mathematics, vol. 2096 (Springer, Berlin, 2013)zbMATHGoogle Scholar
- 70.T. Iwaniec, J. Onninen, Radó–Kneser–Choquet theorem. Bull. Lond. Math. Soc. 46(6), 1283–1291 (2014)MathSciNetCrossRefGoogle Scholar
- 73.D. Kalaj, Quasiconformal harmonic functions between convex domains. Publ. Inst. Math. 75(89), 139–146 (2004)MathSciNetCrossRefGoogle Scholar
- 76.D. Kalaj, A priori estimate of gradient of a solution to certain differential inequality and quasiconformal mappings. J. Anal. Math. 119, 63–88 (2013)MathSciNetCrossRefGoogle Scholar
- 79.D. Kalaj, M. Pavlović, Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane. Ann. Acad. Sci. Fenn. Math. 30(1), 159–165 (2005)MathSciNetzbMATHGoogle Scholar
- 93.E.C. Lawrence, Partial Differential Equations. Graduated Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, 1998)Google Scholar
- 95.H. Lewy, On the non-vanishing of the Jacobian of a homeomorphism by harmonic gradients. Ann. Math. 88, 518–529 (1968)MathSciNetCrossRefGoogle Scholar
- 99.V. Manojlović, Bi-Lipschicity of quasiconformal harmonic mappings in the plane. Filomat 23(1), 85–89 (2009)MathSciNetCrossRefGoogle Scholar
- 103.V. Manojlović, On biLipschicity of quasiconformal mappings. Novi Sad J. Math. 45(1), 105–109 (2015)MathSciNetCrossRefGoogle Scholar
- 114.O. Martio, J. Väisälä, Quasihyperbolic geodesics in convex domains. II. Pure Appl. Math. Q. 7(2), 395–409 (2011). Special Issue: In Honor of Frederick W. Gehring, Part IIMathSciNetCrossRefGoogle Scholar
- 116.M. Mateljević, Distortion of harmonic functions and harmonic quasiconformal quasi-isometry. Rev. Roumaine Math. Pures Appl. 51(5–6), 711–722 (2006)MathSciNetzbMATHGoogle Scholar
- 121.D. Partyka, K. Sakan, On bi-Lipschitz type inequalities for quasiconformal harmonic mappings. Ann. Acad. Sci. Fenn. Math. 32(2), 579–594 (2007)MathSciNetzbMATHGoogle Scholar
- 123.M. Pavlović, Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk. Ann. Acad. Sci. Fenn. Math. 27(2), 365–372 (2002)MathSciNetzbMATHGoogle Scholar
- 124.M. Pavlović, Function Classes on the Unit Disc – An Introduction. Studies in Mathematics, vol. 52 (De Gruyter, Berlin 2014)Google Scholar
- 150.E. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970)zbMATHGoogle Scholar
- 155.J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Mathematics, vol. 229 (Springer, Berlin, 1971)CrossRefGoogle Scholar
- 158.M. Vuorinen, Conformal Geometry and Quasiregular Mappings. Lecture Notes in Mathematics, vol. 1319 (Springer, Berlin, 1988)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019