Quasiconformal and Quasiregular Harmonic Mappings
- 176 Downloads
Abstract
In this chapter we build the foundation for the work that comes in the rest of the book. We begin with the definition of two conformal invariants, the modulus of a curve family and the capacity of a condenser, which are two closely related notions. These tools enable us to define quasiconformal and quasiregular mappings which are the basic classes of mappings to be studied. Several examples of quasiconformal mappings are given illustrating the importance of this class of functions and their role in Geometric Function Theory. Moduli of continuity of harmonic mappings, which are either quasiconformal or quasiregular at the same time, are considered and some sharp estimates are given for all dimensions n ≥ 2. In particular, we study the case of Lipschitz continuity of mappings defined in the unit ball.
References
- 6.L. Ahlfors, A. Beurling, Conformal invariants and function-theoretic null-sets. Acta Math. 83, 101–129 (1950)MathSciNetCrossRefGoogle Scholar
- 7.H. Aikawa, Hölder continuity of the Dirichlet solution for a general domain. Bull. Lond. Math. Soc. 34(6), 691–702 (2002)MathSciNetCrossRefGoogle Scholar
- 8.G.D. Anderson, Dependence on dimension of a constant related to the Grötzsch ring. Proc. Am. Math. Soc. 61, 77–80 (1976)zbMATHGoogle Scholar
- 10.G.D. Anderson, M.K. Vamanamurthy, M.K. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps. Canadian Mathematical Society Series of Monographs and Advanced Texts (Wiley, New York, 1997)zbMATHGoogle Scholar
- 12.M. Arsenović, V. Manojlović, On the modulus of continuity of harmonic quasiregular mappings on the unit ball in R n. Filomat 23(3), 199–202 (2009)MathSciNetCrossRefGoogle Scholar
- 13.M. Arsenović, V. Kojić, M. Mateljević, On Lipschitz continuity of harmonic quasiregular maps on the unit ball in \(\mathbb R^n\). Ann. Acad. Sci. Fenn. Math. 33(1), 315–318 (2008)Google Scholar
- 14.M. Arsenović, V. Manojlović, M. Mateljević, Lipschitz-type spaces and harmonic mappings in the space. Ann. Acad. Sci. Fenn. Math. 35(2), 379–387 (2010)MathSciNetCrossRefGoogle Scholar
- 15.M. Arsenović, V. Božin, V. Manojlović, Moduli of continuity of harmonic quasiregular mappings in \(\mathbf {\mathbb B}^n\). Potential Anal. 34(3), 283–291 (2011)Google Scholar
- 16.M. Arsenović, V. Manojlović, M. Vuorinen, Hölder continuity of harmonic quasiconformal mappings. J. Inequal. Appl. 2011, 37 (2011)CrossRefGoogle Scholar
- 17.M. Arsenović, V. Manojlović, R. Näkki, Boundary modulus of continuity and quasiconformal mappings. Ann. Acad. Sci. Fenn. Math. 37(1), 107–118 (2012)MathSciNetCrossRefGoogle Scholar
- 23.S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory. Graduate Texts in Mathematics, vol. 137 (Springer, New York, 1992)CrossRefGoogle Scholar
- 31.J. Byström, Sharp constants for some inequalities connected to the p-Laplace operator. J. Inequal. Pure. Appl. Math. 6(2), 56A, 8 pp. (2005)Google Scholar
- 32.L.A. Caffarelli, D. Kinderlehrer, Potential methods in variational inequalities. J. Anal. Math. 37, 285–295 (1980)MathSciNetCrossRefGoogle Scholar
- 33.P. Caraman, n-Dimensional Quasiconformal (QCf) Mappings (Abacus Press, Tunbridge Wells, 1974)zbMATHGoogle Scholar
- 34.L. Carleson, Selected Problems on Exceptional Sets. Van Nostrand Mathematical Studies, vol. 13 (Van Nostrand, Princeton, 1967)Google Scholar
- 40.P. Duren, Theory of H p Spaces. Pure and Applied Mathematics, vol. 38 (Academic, New York, 1970)Google Scholar
- 45.B. Fuglede, Extremal length and functional completion. Acta Math. 98, 171–219 (1957)MathSciNetCrossRefGoogle Scholar
- 47.J.B. Garnett, D.E. Marshall, Harmonic Measure (Cambridge University Press, Cambridge, 2005)CrossRefGoogle Scholar
- 48.F.W. Gehring, Symmetrization of rings in space. Trans. Am. Math. Soc. 101, 499–519 (1961)MathSciNetCrossRefGoogle Scholar
- 49.F.W. Gehring, Rings and quasiconformal mappings in space. Trans. Am. Math. Soc. 103, 353–393 (1962)MathSciNetCrossRefGoogle Scholar
- 51.F.W. Gehring, Quasiconformal mappings in Euclidean spaces, in Handbook of Complex Analysis: Geometric Function Theory, vol. 2 (Elsevier, Amsterdam, 2005), pp. 1–29Google Scholar
- 64.J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs (Oxford University Press, New York, 1993)zbMATHGoogle Scholar
- 67.J. Hesse, A p-extremal length and p-capacity equality. Ark. Mat. 13, 131–141 (1975)MathSciNetCrossRefGoogle Scholar
- 68.A. Hinkkanen, Modulus of continuity of harmonic functions. J. Anal. Math. 51, 1–29 (1988)MathSciNetCrossRefGoogle Scholar
- 71.P. Järvi, M. Vuorinen, Uniformly perfect sets and quasiregular mappings. J. Lond. Math. Soc. 54(3), 515–529 (1996)MathSciNetCrossRefGoogle Scholar
- 76.D. Kalaj, A priori estimate of gradient of a solution to certain differential inequality and quasiconformal mappings. J. Anal. Math. 119, 63–88 (2013)MathSciNetCrossRefGoogle Scholar
- 78.D. Kalaj, V. Manojlović, Subharmonicity of the modulus of quasiregular harmonic mappings. J. Math. Anal. Appl. 379(2), 783–787 (2011)MathSciNetCrossRefGoogle Scholar
- 80.L. Keen, N. Lakić, Hyperbolic Geometry from a Local Viewpoint. London Mathematical Society, Student Texts, vol. 68 (Cambridge University Press, Cambridge, 2007)Google Scholar
- 86.V. Kojić, Metric spaces and quasiconformal mappings. Master Thesis, Belgrade (2007)Google Scholar
- 88.V. Kojić, M. Pavlović, Subharmonicity of |f|p for quasiregular harmonic functions, with applications. J. Math. Anal. Appl. 342(1), 742–746 (2008)MathSciNetCrossRefGoogle Scholar
- 92.R. Kühnau, ed., Handbook of Complex Analysis: Geometric Function Theory, vol. 1/2 (Elsevier, Amsterdam, 2002/2005)Google Scholar
- 94.O. Lehto, K.I. Virtanen, Quasiconformal Mappings in the Plane. Die Grundlehren der math. Wissenschaften, vol. 126, 2nd edn. (Springer, Berlin, 1973)Google Scholar
- 105.A. Marden, S. Rickman, Holomorphic mapping of bounded distortion. Proc. Am. Math. Soc. 46, 226–228 (1984)MathSciNetCrossRefGoogle Scholar
- 110.O. Martio, On harmonic quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I 425, 10 pp. (1968)Google Scholar
- 111.O. Martio, R. Näkki, Boundary Hölder continuity and quasiconformal mappings. J. Lond. Math. Soc. 44(2), 339–350 (1991)CrossRefGoogle Scholar
- 113.O. Martio, S. Rickman, J. Väisälä, Definitions of quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I 448, 40 pp. (1969)Google Scholar
- 115.O. Martio, S. Rickman, J. Väisälä, Distortion and singularities of quasiregular mappings. Ann. Acad. Sci. Fenn. A I 465, 1–13 (1970)MathSciNetzbMATHGoogle Scholar
- 120.R. Näkki, B. Palka, Asymptotic values and Hölder continuity of quasiconformal mappings. J. Anal. Math. 48, 167–178 (1987)CrossRefGoogle Scholar
- 126.E.A. Poletsky, Holomorphic quasiregular mappings. Proc. Am. Math. Soc. 95(2) , 235–241 (1985)MathSciNetCrossRefGoogle Scholar
- 127.Ch. Pommerenke, Boundary Behavior of Conformal Maps. Fundamental Principles of Mathematical Sciences, vol. 299 (Springer, Berlin, 1992)Google Scholar
- 130.K. Rajala, The local homeomorphism property of spatial quasiregular mappings with distortion close to one. Geom. Funct. Anal. 15(5), 1100–1127 (2005)MathSciNetCrossRefGoogle Scholar
- 132.Yu.G. Reshetnyak, Spatial Mappings with Bounded Distortion. Izdat. “Nauka” Sibirsk (Otdelenie, Novosibirsk, 1982, in Russian)Google Scholar
- 133.S. Rickman, Quasiregular Mappings. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26 (Springer, Berlin, 1993)Google Scholar
- 137.L.A. Rubel, A.L. Shields, B.A. Taylor, Mergelyan Sets and the Modulus of Continuity. Approximation Theory (Academic, New York, 1973), pp. 457–460zbMATHGoogle Scholar
- 140.P. Seittenranta, Linear dilatation of quasiconformal maps in space. Duke Math. J. 91(1), 1–16 (1998)MathSciNetCrossRefGoogle Scholar
- 150.E. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970)zbMATHGoogle Scholar
- 151.P.M. Tamrazov, Contour and solid structural properties of holomorphic functions of a complex variable. Uspehi Mat. Nauk 28, 131–161 (1973, in Russian). English translation in Russian Math. Surveys 28 (1973), 141–173CrossRefGoogle Scholar
- 155.J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Mathematics, vol. 229 (Springer, Berlin, 1971)CrossRefGoogle Scholar
- 158.M. Vuorinen, Conformal Geometry and Quasiregular Mappings. Lecture Notes in Mathematics, vol. 1319 (Springer, Berlin, 1988)CrossRefGoogle Scholar
- 159.M. Vuorinen, Quadruples and spatial quasiconformal mappings. Math. Z. 205(4), 617–628 (1990)MathSciNetCrossRefGoogle Scholar
- 164.W.P. Ziemer, Extremal length and p-capacity. Mich. Math. J. 16, 43–51 (1969)MathSciNetCrossRefGoogle Scholar