Skip to main content

Advanced Phase Triangulation Methods for 3D Shape Measurements in Scientific and Industrial Applications

  • Chapter
  • First Online:
Machine Vision and Navigation

Abstract

This chapter comprises the review of new methods of phase triangulation, which allow 3D geometry measurements under the conditions of arbitrary measured object surface light-scattering properties, varying measurement setting external illumination, and limited depth of field of optical elements of the source and receiver of optical radiation. The application of the proposed methods provides higher metrological characteristics of measuring systems and expands the functionality and the range of application of optical-electronic systems for geometric control in the production environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three dimensional

IT SB RAS:

Institute of Thermophysics Siberian Branch of Russian academy of Science

RFBR:

Russian Fund of Basic Research

RMS:

Root mean square

References

  1. Gorthi, S. S., & Rastogi, P. (2010). Fringe projection techniques: Whither we are? Optics and Lasers in Engineering, 48, 133–140.

    Article  Google Scholar 

  2. D’Apuzzo, N. (2006). Overview of 3D surface digitization technologies in Europe. In Proc. SPIE, pp. 1–13.

    Google Scholar 

  3. Zhang, S. (2010). Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques. Optics and Lasers in Engineering, 48(2), 149–158.

    Article  Google Scholar 

  4. Lindner, L., Sergiyenko, O., Rivas-Lopez, M., Hernandez-Balbuena, D., Flores-Fuentes, W., Rodriguez-Quinonez, J. C., Murrieta-Rico, F. N., Ivanov, M., Tyrsa, V., & Basaca, L. C. (2017). Exact laser beam positioning for measurement of vegetation vitality. Industrial Robot: An International Journal, 44(4), 532–541.

    Article  Google Scholar 

  5. Lindner, L. (2016). Laser scanners. In O. Sergiyenko & J. C. Rodriguez-Quinonez (Eds.), Developing and applying optoelectronics in machine vision. Hershey, PA: IGI Global. 38.

    Google Scholar 

  6. Lindner, L., Sergiyenko, O., Rivas-Lopez, M., Ivanov, M., Rodriguez-Quinonez, J., Hernandez-Balbuena, D., Flores-Fuentes, W., Tyrsa, V., Muerrieta-Rico, F. N., & Mercorelli, P. (2017). Machine vision system errors for unmanned aerial vehicle navigation. In Industrial Electronics (ISIE), 2017 IEEE 26th International Symposium on, Edinburgh.

    Google Scholar 

  7. Lindner, L., Sergiyenko, O., Rivas-Lopez, M., Valdez-Salas, B., Rodriguez-Quinonez, J. C., Hernandez-Balbuena, D., Flores-Fuentes, W., Tyrsa, V., Medina Barrera, M., Muerrieta-Rico F., & Mercorelli, P. (2016). UAV remote laser scanner improvement by continuous scanning using DC motors. In Industrial Electronics Society, IECON 2016, Florence.

    Google Scholar 

  8. Lindner, L., Sergiyenko, O., Rivas-Lopez, M., Valdez-Salas, B., Rodriguez-Quinonez, J. C., Hernandez-Balbuena, D., Flores-Fuentes, W., Tyrsa, V., Medina, M., Murietta-Rico, F., Mercorelli, P., Gurko, A., & Kartashov, V. (2016). Machine vision system for UAV navigation. In Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), International Conference on, Toulouse.

    Google Scholar 

  9. Chen, L., Liang, C., Nguyen, X., Shu, Y., & Wu, H.-W. (2010). High-speed 3D surface profilometry employing trapezoidal phase-shifting method with multi-band calibration for colour surface reconstruction. Measurement Science and Technology, 21(10), 105309.

    Article  Google Scholar 

  10. Lohry, W., & Zhang, S. (2014). High-speed absolute three-dimensional shape measurement using three binary dithered patterns. Optics Express, 22, 26752–26762.

    Article  Google Scholar 

  11. Wissmann, P., Schmitt, R., & Forster, F. (2011). Fast and accurate 3D scanning using coded phase shifting and high speed pattern projection. In Proceedings of the IEEE Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, pp. 108–115. IEEE.

    Google Scholar 

  12. Zuo, C., et al. (2013). High-speed three-dimensional shape measurement for dynamic settings using bi-frequency tripolar pulse-width-modulation fringe projection. Optics and Lasers in Engineering, 51(8), 953–960.

    Article  Google Scholar 

  13. Zhang, S., & Yau, S.-T. (2007). Generic nonsinusoidal phase error correction for threedimensional shape measurement using a digital video projector. Applied Optics, 46(1), 36–43.

    Article  Google Scholar 

  14. Zhang, S., & Huang, P. S. (2007). Phase error compensation for a 3-D shape measurement system based on the phase-shifting method. Optical Engineering, 46(6), 063601–063601-9.

    Article  Google Scholar 

  15. Song, L., et al. (2015). Phase unwrapping method based on multiple fringe patterns without use of equivalent wavelengths. Optics Communication, 355, 213–224.

    Article  Google Scholar 

  16. Armangue, X., Salvi, J., & Battle, J. (2002). A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recognition, 35(7), 1617–1635.

    Article  Google Scholar 

  17. Guzhov, V. I. (1995). Practical aspects of phase measurement in interferometry. Avtometria, 5, 25–31.

    Google Scholar 

  18. Guzhov, V. I., & Solodkin, Y. N. (1992). Accuracy analysis of determination of phase total difference in integer interferometers. Avtometria, (6), 24–30.

    Google Scholar 

  19. Indebetouw, G. (1978). Profile measurement using projection of running fringes. Applied Optics, 17, 2930–2933.

    Article  Google Scholar 

  20. Takeda, M., & Mutoh, K. (1983). Fourier transform profilometry for the automatic measurement of 3-D object shapes. Applied Optics, 22(24), 3977–3982.

    Article  Google Scholar 

  21. Bruning, J. H., Herriott, D. R., Gallagher, J. E., Rosenfeld, D. P., White, A. D., & Brangaccio, D. J. (1974). Digital wave-front measuring for testing optical surfaces and lenses. Applied Optics, 13, 2693–2703.

    Article  Google Scholar 

  22. Dvoynishnikov, S. V., Kulikov, D. V., & Meledin, V. G. (2010). Optoelectronic method of contactless reconstruction of the surface profile of complexly shaped three-dimensional objects. Measurement Techniques, 53(6), 648–656.

    Article  Google Scholar 

  23. Takeda, M., & Yamamoto, H. (1994). Fourier-transform speckle profilometry: Three-dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces. Applied Optics, 33(34), 7829–7837.

    Article  Google Scholar 

  24. Gruber, M., & Hausler, G. (1992). Simple, robust and accurate phase-measuring triangulation. Optik, 3, 118–122.

    Google Scholar 

  25. Inokuchi, S., & Sato, K., et al. (1984). Range-imaging system for 3-D object recognition. In Proceeding of 7th International Conference Pattern Recognition, Montreal, Canada, pp. 806–808.

    Google Scholar 

  26. Stahs, T., & Wahl, F. (1992). Fast and versatile range data acquisition. In IEEE/RSJ International Conference Intelligent Robots and Systems, Raleigh, NC, pp. 1169–1174.

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by RFBR (project No 18-08-00910) and was carried out under state contract with IT SB RAS.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dvoynishnikov, S.V., Kabardin, I.K., Meledin, V.G. (2020). Advanced Phase Triangulation Methods for 3D Shape Measurements in Scientific and Industrial Applications. In: Sergiyenko, O., Flores-Fuentes, W., Mercorelli, P. (eds) Machine Vision and Navigation. Springer, Cham. https://doi.org/10.1007/978-3-030-22587-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22587-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22586-5

  • Online ISBN: 978-3-030-22587-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics