Skip to main content

Methods for Ensuring the Accuracy of Radiometric and Optoelectronic Navigation Systems of Flying Robots in a Developed Infrastructure

  • Chapter
  • First Online:

Abstract

The analysis of the known methods and navigation systems of flying robots (FR) was performed. Among them, because of a number of shown below reasons, the most preferable are passive combined correlation-extreme systems which implement the survey-comparative method. A basic model for the radiometric channel operation of the correlation-extreme navigation systems is proposed. The factors that lead to distortions of the decisive function formed by the combined correlation-extreme navigation system of flying robots in a developed infrastructure are allocated. A solution of the problem of autonomous low-flying flying robot navigation in a developed infrastructure using the radiometric channel extreme correlation navigation systems (CENS), when the size of the solid angle of associated object is much larger than the size of the partial antenna directivity diagram (ADD), is proposed. The appearance possibility of spurious objects that are close in parameters (geometric dimensions and brightness) to the anchor object, depending on the current image sight geometry formed by the optoelectronic channel of the combined CENS, is taken into account.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACS:

Automated control systems

ADD:

Antenna directivity diagram

CAF:

Correlation analysis field

CCC:

Coefficient of cross correlation

CENS:

Channel extreme correlation navigation systems

CENS-I:

CENS in which information is currently removed at a point

CENS-II:

CENS in which information is currently removed from a line

CENS-III:

CENS in which information is currently removed from an area (frame)

CI:

Current image

CS:

Control systems

DF:

Decision function

EMR:

Electromagnetic radiation

FO:

False object

FR:

Flying robots

FW-UAV:

Fixed wings unmanned aerial vehicle

IF:

Informational field

INS:

Inertial navigation system

LPF:

Low-pass filter

NS:

Navigation system

OB:

Object of binding

PM:

Propagation medium

RI:

Reference image

RM:

Radiometric

RMI:

Radiometric imaging

RW-UAV:

Rotary wings unmanned aerial vehicle

SD:

Standard deviation

SDPN:

Sensors of different physical nature

SI:

Source image

SS:

Sighting surface

TNM:

Technical navigation means

UAV:

Unmanned aerial vehicle

References

  1. Leutenegger, S., et al. (2016). Flying robots. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics. Springer handbooks (pp. 623–670). Cham: Springer.

    Chapter  Google Scholar 

  2. Basset, P. M., Tremolet, A., & Lefebvre, T. (2014). Rotary wing UAV pre-sizing: Past and present methodological approaches at onera. AerospaceLab, 1–12.

    Google Scholar 

  3. Taha, H., Kiani, M., & Navarro, J. (2018). Experimental demonstration of the vibrational stabilization phenomenon in bio-inspired flying robots. IEEE Robotics and Automation Letters, 3(2), 643–647.

    Article  Google Scholar 

  4. Beard, R. W., Ferrin, J., & Humpherys, J. (2014). Fixed wing UAV path following in wind with input constraints. IEEE Transactions on Control Systems Technology, 22(6), 2103–2117.

    Article  Google Scholar 

  5. Lindner, L., Sergiyenko, O., RodrÐguez-Quiñonez, J., Rivas-López, M., Hernández-Balbuena, D., Flores-Fuentes, W., Murrieta-Rico, F. N., & Tyrsa, V. (2016). Mobile robot vision system using continuous laser scanning for industrial application. Industrial Robot, 43(4), 360–369.

    Article  Google Scholar 

  6. Lindner, L., Sergiyenko, O., Rivas-Lopez, M., Hernandez-Balbuena, D., Flores-Fuentes, W., RodrÐguez-Quiñonez, J., Murrieta-Rico, F., Ivanov, M., Tyrsa, V., & Basaca, L. (2017). Exact laser beam positioning for measurement of vegetation vitality. Industrial Robot: An International Journal, 44(4), 532–541.

    Article  Google Scholar 

  7. Scaramuzza, D., et al. (2014). Vision-controlled micro flying robots: From system design to autonomous navigation and mapping in GPS-denied environments. IEEE Robotics & Automation Magazine, 21(3), 26–40.

    Article  Google Scholar 

  8. Dunbabin, M., & Marques, L. (2012). Robots for environmental monitoring: Significant advancements and applications. IEEE Robotics & Automation Magazine, 19(1), 24–39.

    Article  Google Scholar 

  9. Song, G., Yin, K., Zhou, Y., & Cheng, X. (2009). A surveillance robot with hopping capabilities for home security. IEEE Transactions on Consumer Electronics, 55(4), 2034–2039.

    Article  Google Scholar 

  10. Finn, R. L., & Wright, D. (2012). Unmanned aircraft systems: Surveillance, ethics and privacy in civil applications. Computer Law & Security Review, 28(2), 184–194.

    Article  Google Scholar 

  11. Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W. (2013). OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots, 34(3), 189–206.

    Article  Google Scholar 

  12. Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: A review. Applied Geomatics, 6(1), 1–15.

    Article  Google Scholar 

  13. Faessler, M., Fontana, F., Forster, C., Mueggler, E., Pizzoli, M., & Scaramuzza, D. (2016). Autonomous, vision-based flight and live dense 3D mapping with a quadrotor micro aerial vehicle. Journal of Field Robotics, 33(4), 431–450.

    Article  Google Scholar 

  14. Sotnikov, A. M., & Tarshin, V. A. (2013). Problemy i perspektivy razvitiya navigatsionnoy podderzhki vozdushnykh sudov. Zbirnyk naukovykh prats’ Kharkivs’koho universytetu Povitryanykh Syl, 3(36), 57–63. [In Russian].

    Google Scholar 

  15. Sotnikov, O. M., Tarshin, V. A., & Otkryto, P. V. (2013). Problemy i pryamoye razvitiye yadro-spetsificheskikh ekstremal’nykh sistem, nalozhennykh kerovanami apparatury. Sovremennyye informatsionnyye tekhnologii v sfere oborony bez oborony, 3(18), 93–96. [In Russian].

    Google Scholar 

  16. Keller, J., Thakur, D., Likhachev, M., Gallier, J., & Kumar, V. (2017). Coordinated path planning for fixed-wing UAS conducting persistent surveillance missions. IEEE Transactions on Automation Science and Engineering, 14(1), 17–24.

    Article  Google Scholar 

  17. Li, H., & Savkin, A. V. (2018). Wireless sensor network based navigation of micro flying robots in the industrial internet of things. IEEE Transactions on Industrial Informatics, 14(8), 3524–3533.

    Article  Google Scholar 

  18. Somov, Y., Butyrin, S., Somov, S., & Somova, T. (2017). In-flight calibration, alignment and verification of an astroinertial attitude determination system for free-flying robots and land-survey satellites. In 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Padua, pp. 474–478.

    Google Scholar 

  19. Sotnikov, A. M., Antyufeyev, V. I., Bykov, V. N., Grichanyuk, A. M. et al. (2014). Matrichnyye radiometricheskiye korrelyatsionno-ekstremal’nyye sistemy navigatsii letatel’nykh apparatov. Book: Ministerstvo obrazovaniya i nauki Ukrainy. KHNU imeni V.N. Karazina. 372p. [In Russian].

    Google Scholar 

  20. Sotnikov, A., Tarshyn, V., Yeromina, N., Petrov, S., & Antonenko, N. (2017). A method for localizing a reference object in a current image with several bright objects. Eastern-European Journal of Enterprise Technologies, 3(87), 68–74.

    Article  Google Scholar 

  21. Sotnikov, A. M., & Tarshin, V. A. (2012). Obosnovaniye printsipov postroyeniya i razvitiya modeli korrelyatsionno-ekstremal’noy sistemy navedeniya kombinirovannogo tipa. Sistema Upravleniya Navigatsiyey ta Zvozdku. K., 4(24), 7–11. [In Russian].

    Google Scholar 

  22. Sotnikov, A. M., Tantsiura, A. B., & Lavrov, O. Y. (2018). Calculating method of error calculations of the object coordinating platform free inertial navigation systems of unmanned aerial vehicle. Advanced Information Systems, 2(1), 32–41.

    Article  Google Scholar 

  23. SotnÐkov, O. M., Vorobey, O. M., & Tantsyura, O. B. (2018). ModelÐ potochnikh zobrazhen’, shcho formuyut’sya kanalami kombÐnovanoÐ̈ korelyatsÐyno-yekstremal’noÐ̈ sistemi navÐgatsÐÐ̈ bezpÐlotnogo lÐtal’nogo aparatu. SuchasnÐ ÍnformatsÐynÐ TekhnologÐÐ̈ u SferÐ Bezpeki ta Oboroni, 2(32), 29–38. [In Ukrainian].

    Google Scholar 

  24. Tarshin, V. A., Sotnikov, A. M., Sidorenko, R. G., & Mezentsev, A. V. (2015). Metodologiya otsenki informativnosti iskhodnykh izobrazheniy dlya vysokotochnykh korrelyatsionno-ekstremal’nykh navigatsionnykh system. Sistemy obrabotki informatsii, 10, 60–63. [In Russian].

    Google Scholar 

  25. Tarshin, V. A., Sotnikov, A. M., Sidorenko, R. G., & Megel’bey, V. V. (2015). Podgotovka etalonnykh izobrazheniy dlya vysokotochnykh korrelyatsionno-ekstremal’nykh sistem navigatsii na osnove formirovaniya polya fraktal’nykh razmernostey. Sistemi ozbroênnya Ð vÐys’kova tekhnÐka, 2, 142–144. [In Russian].

    Google Scholar 

  26. Tarshin, V. A., Sotnikov, A. M., & Sidorenko, R. G. (2015). Podgotovka etalonnykh izobrazheniy dlya vysokotochnykh korrelyatsionno-ekstremal’nykh sistem navigatsii na osnove ispol’zovaniya pryamogo korrelyatsionnogo analiza. Nauka Ð tekhnÐka povÐtryanikh sil zbroynikh sil ukraÐ̈ni, 2, 69–73. [In Russian].

    Google Scholar 

  27. Smelyakov, K. S., Ruban, I. V., Smelyakov, S. V., & Tymochko, О. І. (2005). Segmentation of small-sized irregular images. In Proceeding of IEEE East-West Design & Test Workshop (EWDTW’05), Odessa, pp. 235–241.

    Google Scholar 

  28. Hernandez, W., & Mendez, A. (2018). Application of principal component analysis to image compression. In Statistics-Growing Data Sets and Growing Demand for Statistics. IntechOpen.

    Google Scholar 

  29. Shen, Z., & Song, E. (2018). Dynamic filtering of sparse signals via L1 minimization with variant parameters. In 2018 37th Chinese Control Conference (CCC), Wuhan, pp. 4409–4414.

    Google Scholar 

  30. Ham, B., Cho, M., & Ponce, J. (2018). Robust guided image filtering using nonconvex potentials. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(1), 192–207.

    Article  Google Scholar 

  31. Tymochko, О. І., & Podorozhnyak, А. О. (2007). Lokalizatsiya ob’ektu poshuku na potochnomu zobrazhenni navigatsiynoy systemy z raiometrychnymy datchykamy. Zbirnyk naukovykh prats Kharkivskoho universytetu Povitryanykh Syl, 1(13), 47–50. [In Ukrainian].

    Google Scholar 

  32. Sergiyenko, O., Hernandez, W., Tyrsa, V., Devia Cruz, L., Starostenko, O., & Pena-Cabrera, M. (2009). Remote sensor for spatial measurements by using optical scanning. Sensors, 9(7), 5477–5492.

    Article  Google Scholar 

  33. Sergiyenko, O. Y. (2010). Optoelectronic system for mobile robot navigation. Optoelectronics, Instrumentation and Data Processing, 46(5), 414–428.

    Article  Google Scholar 

  34. Garcia-Cruz, X. M., Sergiyenko, O. Y., Tyrsa, V., Rivas-Lopez, M., Hernandez-Balbuena, D., Rodriguez-Quiñonez, J. C., Basaca-Preciado, L. C., & Mercorelli, P. (2014). Optimization of 3D laser scanning speed by use of combined variable step. Optics and Lasers in Engineering, 54, 141–151.

    Article  Google Scholar 

  35. Básaca-Preciado, L. C., Sergiyenko, O. Y., RodrÐguez-Quinonez, J. C., GarcÐa, X., Tyrsa, V., Rivas-Lopez, M., Hernandez-Balbuena, D., Mercorelli, P., Podrygalo, M., Gurko, A., Tabakova, I., & Starostenko, O. (2014). Optical 3D laser measurement system for navigation of autonomous mobile robot. Optics and Lasers in Engineering, 54, 159–169.

    Article  Google Scholar 

  36. Cañas, N., Hernandez, W., González, G., & Sergiyenko, O. (2014). Controladores multivariables para un vehiculo autonomo terrestre: Comparación basada en la fiabilidad de software. RIAI-Revista Iberoamericana de Automática e Informática Industrial, 11(2), 179–190. [In Spanish].

    Article  Google Scholar 

  37. Straβberger, D., Mercorelli, P., Sergiyenko, O., & Decoupled, A. (2015). MPC for motion control in robotino using a geometric approach. Journal of Physics: Conference Series, 659, 1–10.

    Google Scholar 

  38. Sergiyenko, O. Y., Ivanov, M. V., Tyrsa, V. V., Kartashov, V. M., Rivas-López, M., Hernández-Balbuena, D., Flores-Fuentes, W., RodrÐguez-Quiñonez, J. C., Nieto- Hipólito, J. I., Hernandez, W., & Tchernykh, A. (2016). Data transferring model determination in robotic group. Robotics and Autonomous Systems, 83, 251–260.

    Article  Google Scholar 

  39. RodrÐguez-Quiñonez, J. C., Sergiyenko, O., Flores-Fuentes, W., Rivas-lopez, M., Hernandez-Balbuena, D., Rascón, R., & Mercorelli, P. (2017). Improve a 3D distance measurement accuracy in stereo vision systems using optimization methods’ approach. Opto-Electronics Review, 25(1), 24–32.

    Article  Google Scholar 

  40. Sergiyenko, O., Tyrsa, V., Flores-Fuentes, W., Rodriguez-Quiñonez, J., & Mercorelli, P. (2018). Machine vision sensors. Journal of Sensors, 2018, 3202761.

    Article  Google Scholar 

  41. Sergiyenko, O., Flores-Fuentes, W., & Tyrsa, V. (2017). Methods to improve resolution of 3D laser scanning (p. 132). LAP LAMBERT Academic Publishing.

    Google Scholar 

  42. Sergiyenko, O., & Rodriguez-Quiñonez, J. C. (Eds.). (2016). Developing and applying optoelectronics in machine vision (p. 341). Hershey, PA: IGI Global.

    Google Scholar 

  43. Ivanov, M., Lindner, L., Sergiyenko, O., RodrÐguez-Quiñonez, J. C., Flores-Fuentes, W., & Rivas-López, M. (2019). Mobile robot path planning using continuous laser scanning. In Optoelectronics in machine vision-based theories and applications (pp. 338–372). IGI Global. https://doi.org/10.4018/978-1-5225-5751-7.ch012.

  44. Sergiyenko, O. Y., Tyrsa, V. V., Devia, L. F., Hernandez, W., Starostenko, O., & Rivas Lopez, M. (2009). Dynamic laser scanning method for mobile robot navigation. In Proceedings of ICCAS-SICE 2009, ICROS-SICE International Joint Conference, Fukuoka, Japan, 18–21 August 2009, pp. 4884–4889.

    Google Scholar 

  45. Rivas, M., Sergiyenko, O., Aguirre, M., Devia, L., Tyrsa, V., & Rendón, I. Spatial data acquisition by laser scanning for robot or SHM task. In IEEE-IES Proceedings “International Symposium on Industrial Electronics” (ISIE-2008), Cambridge, UK, 30 of June–2 of July, 2008, pp. 1458–1463.

    Google Scholar 

  46. Básaca, L. C., RodrÐguez, J. C., Sergiyenko, O., Tyrsa, V. V., Hernández, W., Nieto Hipólito, J. I., & Starostenko, O. (2010). Resolution improvement of dynamic triangulation method for 3D vision system in robot navigation task. In Proceedings of IEEE-36th Annual Conference of IEEE Industrial Electronics (IECON-2010), Glendale-Phoenix, AZ, 7–10 November 2010, pp. 2880–2885.

    Google Scholar 

  47. Rohmer, E., Singh, S. P., & Freese, M. (2013). V-rep: A versatile and scalable robot simulation framework. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, pp. 1321–1326.

    Google Scholar 

  48. Michel, O. (2004). Cyberbotics Ltd—WebotsTM: Professional mobile robot simulation. International Journal of Advanced Robotic Systems, 1(1), 5, pp. 39–42.

    Article  Google Scholar 

  49. Furrer, F., Burri, M., Achtelik, M., & Siegwart, R. (2016). RotorS—A modular gazebo MAV simulator framework. Robot Operating System (ROS), 595–625.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir G. Kartashov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sotnikov, O. et al. (2020). Methods for Ensuring the Accuracy of Radiometric and Optoelectronic Navigation Systems of Flying Robots in a Developed Infrastructure. In: Sergiyenko, O., Flores-Fuentes, W., Mercorelli, P. (eds) Machine Vision and Navigation. Springer, Cham. https://doi.org/10.1007/978-3-030-22587-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22587-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22586-5

  • Online ISBN: 978-3-030-22587-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics