Skip to main content

Kinetic Equations and Cell Motion: An Introduction

  • Chapter
  • First Online:
Book cover The Dynamics of Biological Systems

Part of the book series: Mathematics of Planet Earth ((MPE,volume 4))

  • 1279 Accesses

Abstract

Kinetic theory is an old subject which finds its motivations in the description of fluids at the so-called mesoscopic scale where molecules interact but are too numerous for describing the interacting particles individually. We present several examples from physics, we give some mathematical background showing that the kinetic-transport equation enjoys interesting functional analytic properties as other partial differential equations. We also describe in full generality how macroscopic models are derived from kinetic equations. This material gives us the tools to introduce models for bacterial run and tumble motion. The subject has been progressing quickly in the last decades, and a hierarchy of models are now available up to the scale of molecular pathways describing the cell decision to tumble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Adler, Chemotaxis in bacteria. Science 153, 708–716 (1966)

    Article  Google Scholar 

  2. L. Almeida, C. Emako, N. Vauchelet, Existence and diffusive limit of a two-species kinetic model of chemotaxis. Kinet. Relat. Models 8, 359 (2015)

    Article  MathSciNet  Google Scholar 

  3. W. Alt, Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9, 147–177 (1980)

    Article  MathSciNet  Google Scholar 

  4. C. Bardos, R. Santos, R. Sentis, Diffusion approximation and computation of the critical size. Trans. Am. Math. Soc. 284(2), 617–649 (1984)

    Article  MathSciNet  Google Scholar 

  5. C. Bardos, P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(2), 101–118 (1985)

    Article  MathSciNet  Google Scholar 

  6. N. Bellomo, M. Winkler, A degenerate chemotaxis system with flux limitation: maximally extended solutions and absence of gradient blow-up. Commun. Part. Differ. Equ. 42, 436–473 (2017)

    Article  MathSciNet  Google Scholar 

  7. H.C. Berg, E. coli in Motion (Springer, Berlin, 2004)

    Google Scholar 

  8. A. Blanchet, J. Dolbeault, B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 2006(44), 1–32 (2006)

    MathSciNet  MATH  Google Scholar 

  9. E. Bouin, V. Calvez, G. Nadin, Propagation in a kinetic reaction-transport equation: travelling waves and accelerating fronts. Arch. Ration. Mech. Anal. 217(2), 571–617(2015)

    Article  MathSciNet  Google Scholar 

  10. N. Bournaveas, V. Calvez, Global existence for the kinetic chemotaxis model without pointwise memory effects, and including internal variables. Kinet. Relat. Models 1(1), 29–48 (2008)

    Article  MathSciNet  Google Scholar 

  11. N. Bournaveas, V. Calvez, Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(5), 1871–1895 (2009)

    Article  MathSciNet  Google Scholar 

  12. N. Bournaveas, V. Calvez, S. Gutièrrez, B. Perthame, Global existence for a kinetic model of chemotaxis via dispersion and Strichartz estimates. Commun. Partial Differ. Equ. 33, 79–95 (2008)

    Article  MathSciNet  Google Scholar 

  13. M.P. Brenner, L.S. Levitov, E.O. Budrene, Physical mechanisms for chemotactic pattern formation by bacteria. Biophys J. 74, 1677–1693 (1998)

    Article  Google Scholar 

  14. E.O. Budrene, H.C. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995)

    Article  Google Scholar 

  15. D. Cai, L. Tao, M. Shelley, D.W. McLaughlin, An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. PNAS 101, 7757–7762 (2004)

    Article  Google Scholar 

  16. V. Calvez, Chemotactic waves of bacteria at the mesoscale (2016), arXiv:1607.00429

    Google Scholar 

  17. V. Calvez, B. Perthame, S. Yasuda, Traveling wave and aggregation in a flux-limited Keller-Segel model (2017, preprint), arXiv:1709.07296

    Google Scholar 

  18. V. Calvez, G. Raoul, C. Schmeiser, Confinement by biased velocity jumps: aggregation of Escherichia coli. Kinet. Relat. Models 8(4), 651–666 (2015)

    Google Scholar 

  19. J. Caron, J.-L. Feugeas, B. Dubroca, G. Kantor, C. Dejean, T. Pichard, Ph. Nicolaï, E. D’Humières, M. Frank, V. Tikhonchuk, Deterministic model for the transport of energetic particles: application in the electron radiotherapy. Phys. Med. 31(8), 912–921 (2015)

    Article  Google Scholar 

  20. F. Castella, B. Perthame, Estimations de Strichartz pour les équations de transport cinétique. (French) [Strichartz’ estimates for kinetic transport equations] C. R. Acad. Sci. Paris Sér. I Math. 322(6), 535–540 (1996)

    Google Scholar 

  21. C. Cercignani, The Boltzmann Equation and Its Applications. Applied Mathematical Sciences, vol. 67 (Springer, New York, 1988), xii+455 pp

    Google Scholar 

  22. C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, vol. 106 (Springer, New York, 1994), viii+347 pp

    Chapter  Google Scholar 

  23. F. Chalub, P.A. Markowich, B. Perthame, C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits. Monatsh. Math. 142, 123–141 (2004)

    Article  MathSciNet  Google Scholar 

  24. A. Chertock, A. Kurganov, X. Wang, Y. Wu, On a chemotaxis model with saturated chemotactic flux. Kinet. Relat. Models 5, 51–95 (2012)

    Article  MathSciNet  Google Scholar 

  25. Y. Dolak, C. Schmeiser, Kinetic models for chemotaxis: hydrodynamic limits and spatio-temporal mechanisms. J. Math. Biol. 51, 595–615 (2005)

    Article  MathSciNet  Google Scholar 

  26. R. Eftimie, Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review. J. Math. Biol. 65, 35–75 (2012)

    Article  MathSciNet  Google Scholar 

  27. C. Emako, C. Gayrard, A. Buguin, L. Almeida, N. Vauchelet, Traveling pulses for a two species chemotaxis model. PLoS Comput. Biol. 12, e1004843 (2016)

    Article  Google Scholar 

  28. R. Erban, H. Othmer, From individual to collective behaviour in bacterial chemotaxis. SIAM J. Appl. Math. 65(2), 361–391 (2004)

    Article  MathSciNet  Google Scholar 

  29. R. Erban, H. Othmer, Taxis equations for amoeboid cells. J. Math. Biol. 54, 847–885 (2007)

    Article  MathSciNet  Google Scholar 

  30. R. Glassey, The Cauchy Problem in Kinetic Theory (SIAM, Philadelphia, 1996)

    Book  Google Scholar 

  31. I. Golding, Y. Kozlovski, I. Cohen, E. BenJacob, Studies of bacterial branching growth using reaction-diffusion models for colonial development. Phys. A 260, 510–554 (1998)

    Article  Google Scholar 

  32. F. Golse, Fluid dynamic limits of the kinetic theory of gases, in From Particle Systems to Partial Differential Equations. Springer Proceedings in Mathematics & Statistics, vol. 75 (Springer, Heidelberg, 2014), pp. 3–91

    Google Scholar 

  33. F. Golse, P.-L. Lions, B. Perthame, R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76(1), 110–125 (1988)

    Article  MathSciNet  Google Scholar 

  34. G.L. Hazelbauer, Bacterial chemotaxis: the early years of molecular studies. Annu. Rev. Microbiol. 66, 285–303 (2012)

    Article  Google Scholar 

  35. T. Hillen, M5 mesoscopic and macroscopic models for mesenchymal motion. J. Math. Biol. 53, 585–616 (2006)

    Article  MathSciNet  Google Scholar 

  36. T. Hillen, H.G. Othmer, The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61, 751–775 (2000)

    Article  MathSciNet  Google Scholar 

  37. T. Hillen, K.J. Painter, A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  Google Scholar 

  38. T. Hillen, K. Painter, Transport and anisotropic diffusion models for movement in oriented habitats, in Dispersal, Individual Movement and Spatial Ecology: A mathematical perspective, ed. by M.A. Lewis, P. Maini, S. Petrowskii (Springer, Heidelberg, 2012), pp. 177–222

    Google Scholar 

  39. T. Hillen, A. Swan, The diffusion limit of transport equations in biology, in Mathematical Models and Methods for Living Systems. Lecture Notes in Mathematics, vol. 2167, Fond. CIME/CIME Foundation Subseries (Springer, Cham, 2016), pp. 73–129

    MATH  Google Scholar 

  40. T. Hillen, P. Hinow, Z. Wang, Mathematical analysis of a kinetic model for cell movement in network tissues. Discrete Contin. Dyn. Syst. Ser. B 14(3), 1055–1080 (2010)

    Article  MathSciNet  Google Scholar 

  41. H.J. Hwang, K. Kang, A. Stevens, Global solutions of nonlinear transport equations for chemosensitive movement. SIAM. J. Math. Anal. 36, 1177–1199 (2005)

    Article  MathSciNet  Google Scholar 

  42. F. James, N. Vauchelet, Chemotaxis: from kinetic equations to aggregate dynamics. Nonlinear Differ. Equ. Appl. 20(1), 101–127 (2013)

    Article  MathSciNet  Google Scholar 

  43. F. James, N. Vauchelet, Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations. Discrete Contin. Dyn. Syst. 36(3), 1355–1382 (2016)

    MathSciNet  MATH  Google Scholar 

  44. L. Jiang, Q. Ouyang, Y. Tu, Quantitative modeling of Escherichia coli chemotactic motion in environments varying in space and time. PLoS Comput. Biol. 6, e1000735 (2010)

    Article  MathSciNet  Google Scholar 

  45. Y.V. Kalinin, L. Jiang, Y. Tu, M. Wu, Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophys. J. 96(6), 2439–2448 (2009)

    Article  Google Scholar 

  46. M. Keel, T. Tao, Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)

    Article  MathSciNet  Google Scholar 

  47. E.F. Keller, L.A. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30, 235–248 (1971)

    Article  Google Scholar 

  48. J. Liao, Global solution for a kinetic chemotaxis model with internal dynamics and its fast adaptation limit. J. Differ. Equ. 259(11), 6432–6458 (2015)

    Article  MathSciNet  Google Scholar 

  49. J.T. Locsei, Persistence of direction increases the drift velocity of run and tumble chemotaxis. J. Math. Biol. 55(1), 41–60 (2007)

    Article  MathSciNet  Google Scholar 

  50. B. Mazzag, I. Zhulin, A. Mogilner, Model of bacterial band formation in aerotaxis. Biophys. J. 85, 3558–3574 (2003)

    Article  Google Scholar 

  51. N. Mittal, E.O. Budrene, M.P. Brenner, A. Van Oudenaarden, Motility of Escherichia coli cells in clusters formed by chemotactic aggregation. Proc. Natl. Acad. Sci. U. S. A. 100, 13259–13263 (2003)

    Article  Google Scholar 

  52. M. Mizoguchi, M. Winkler, Blow-up in the two-dimensional parabolic Keller-Segel system. Personal communication

    Google Scholar 

  53. J.D. Murray, Mathematical Biology, vol. 2, 2nd edn. (Springer, Berlin, 2002)

    Google Scholar 

  54. G. Nadin, B. Perthame, L. Ryzhik, Traveling waves for the Keller-Segel system with Fisher birth terms. Interface Free Bound. 10, 517–538 (2008)

    Article  MathSciNet  Google Scholar 

  55. H.G. Othmer, T. Hillen, The diffusion limit of transport equations II: chemotaxis equations. SIAM J. Appl. Math. 62, 122–1250 (2002)

    Article  MathSciNet  Google Scholar 

  56. H. Othmer, S. Dunbar, W. Alt, Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)

    Article  MathSciNet  Google Scholar 

  57. H.G. Othmer, X. Xin, C. Xue, Excitation and adaptation in bacteria-a model signal transduction system that controls taxis and spatial pattern formation. Int. J. Mol. Sci. 14(5), 9205–9248 (2013)

    Article  Google Scholar 

  58. B. Perthame, Mathematics tools for kinetic equations. Bull. Am. Math. Soc. 41(2), 205–244 (2004)

    Article  Google Scholar 

  59. B. Perthame, Transport Equations in Biology. Frontiers in Mathematics (Birkhäuser, Basel, 2007), x+198 pp

    Book  Google Scholar 

  60. B. Perthame, Parabolic Equations in Biology. Growth, Reaction, Movement and Diffusion. Lecture Notes on Mathematical Modelling in the Life Sciences (Springer, Cham, 2015), xii+199 pp

    Book  Google Scholar 

  61. B. Perthame, D. Salort, On a voltage-conductance kinetic system for integrate & fire neural networks. Kinet. Relat. Models 6(4), 841–864 (2013)

    Article  MathSciNet  Google Scholar 

  62. B. Perthame, P.E. Souganidis, A limiting case for velocity averaging. Ann. Sci. école Norm. Sup. (4) 31(4), 591–598 (1998)

    Article  MathSciNet  Google Scholar 

  63. B. Perthame, S. Yasuda, Stiff-response-induced instability for chemotactic bacteria and flux-limited Keller-Segel equation (2017, preprint), arXiv:1703.08386

    Google Scholar 

  64. B. Perthame, M. Tang, N. Vauchelet, Derivation of the bacterial run-and-tumble kinetic equation from a model with biochemical pathway. J. Math. Biol. 73(5), 1161–1178 (2016)

    Article  MathSciNet  Google Scholar 

  65. B. Perthame, Z. Wang, N. Vauchelet, Modulation of stiff response in E. coli bacterial motion. Revista Matemática Iberoamericana. In press

    Google Scholar 

  66. S.L. Porter, G.H. Wadhams, J.P. Armitage, Rhodobacter sphaeroides: complexity in chemotactic signalling. Trends Microbiol. 16(6), 251–260 (2008)

    Article  Google Scholar 

  67. A.B. Potapov, T. Hillen, Metastability in chemotaxis model. J. Dyn. Differ. Equ. 17(2), 293–330 (2005)

    Article  MathSciNet  Google Scholar 

  68. C.V. Rao, J.R. Kirby, A.P. Arkin, Design and diversity in bacterial chemotaxis: a comparative study in Escherichia coli and Bacillus subtilis. PLoS Biol 2(2), E49 (2004)

    Article  Google Scholar 

  69. J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan, B. Perthame, Mathematical description of bacterial traveling pulses. PLoS Comput Biol. 6(8), e1000890 (2010)

    Article  MathSciNet  Google Scholar 

  70. J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin, P. Silberzan, Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc. Natl. Acad. Sci. 108(39), 16235–16240 (2011)

    Article  Google Scholar 

  71. G. Si, T. Wu, Q. Ouyang, Y. Tu, A pathway-based mean-field model for Escherichia coli chemotaxis. Phys. Rev. Lett. 109, 048101 (2012)

    Article  Google Scholar 

  72. G. Si, M. Tang, X. Yang, A pathway-based mean-field model for E. coli chemo- taxis: mathematical derivation and Keller-Segel limit. Multiscale Model Simul. 12(2), 907–926 (2014)

    Google Scholar 

  73. Y. Tu, T.S. Shimizu, H.C. Berg, Modeling the chemotactic response of Escherichia coli to time-varying stimuli. Proc. Natl. Acad. Sci. U. S. A. 105(39), 14855–14860 (2008)

    Article  Google Scholar 

  74. M.J. Tindall, P.K. Maini, S.L. Porter, J.P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations. Bull. Math. Biol. 70, 1570–1607 (2008)

    Article  MathSciNet  Google Scholar 

  75. N. Vauchelet, Numerical simulation of a kinetic model for chemotaxis. Kinet. Relat. Models 3(3), 501–528 (2010)

    Article  MathSciNet  Google Scholar 

  76. C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics, ed. by S. Friedlander, D. Serre (Elsevier, Amsterdam, 2002)

    Google Scholar 

  77. X. Xin, H.G. Othmer, A trimer of dimers-based model for the chemotactic signal transduction network in bacterial chemotaxis. Bull. Math. Biol. 74(10), 2339–2382 (2012)

    Article  MathSciNet  Google Scholar 

  78. C. Xue, H.G. Othmer, Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70(1), 133–167 (2009)

    Article  MathSciNet  Google Scholar 

  79. C. Xue Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J. Math. Biol. 70, 1–44 (2015)

    Google Scholar 

  80. C. Yang, F. Filbet, Numerical simulations of kinetic models for chemotaxis. SIAM J. Sci. Comput. 36, B348 (2014)

    Article  MathSciNet  Google Scholar 

  81. S. Yasuda, Monte Carlo simulation for kinetic chemotaxis model: an application to the traveling population wave. J. Comput. Phys. 330, 1022–1042 (2017)

    Article  MathSciNet  Google Scholar 

  82. X. Zhu, G. Si, N. Deng, Q. Ouyang, T. Wu, Z. He, L. Jiang, C. Luo, Y. Tu, Frequency-dependent Escherichia coli chemotaxis behavior. Phys. Rev. Lett. 108, 128101 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Perthame .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perthame, B. (2019). Kinetic Equations and Cell Motion: An Introduction. In: Bianchi, A., Hillen, T., Lewis, M., Yi, Y. (eds) The Dynamics of Biological Systems. Mathematics of Planet Earth, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-22583-4_9

Download citation

Publish with us

Policies and ethics