Skip to main content

The Turing Model for Biological Pattern Formation

  • Chapter
  • First Online:
The Dynamics of Biological Systems

Part of the book series: Mathematics of Planet Earth ((MPE,volume 4))

Abstract

How spatial patterning arises in biological systems is still an unresolved mystery. Here, we consider the first model for spatial pattern formation, proposed by Alan Turing, which showed that structure could emerge from processes that, in themselves, are non-patterning. He therefore went against the reductionist approach, arguing that biological function arises from the integration of processes, rather than being attributed to a single, unique, process. While still controversial, some 65 years on, his model still inspires mathematical and experimental advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  2. J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications (Springer-Verlag, 2003)

    Google Scholar 

  3. T.T. Marquez-Lago, P. Padilla, A selection criterion for patterns in reaction–diffusion systems. Theor. Biol. Med. Modell. 11(1), 7 (2014)

    Google Scholar 

  4. P. Grindrod, The Theory and Applications of Reaction-Diffusion Equations: Patterns and Waves (Clarendon Press, Oxford, 1996)

    MATH  Google Scholar 

  5. N.F. Britton, Reaction-diffusion Equations and Their Applications to Biology (Academic Press, London, 1986)

    MATH  Google Scholar 

  6. A. Gierer, H. Meinhardt, A theory of biological pattern formation. Biol. Cybern. 12(1), 30–39 (1972)

    MATH  Google Scholar 

  7. J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81(3), 389–400 (1979)

    Article  MathSciNet  Google Scholar 

  8. D. Thomas, Analysis and Control of Immobilised Enzyme Systems. Chapter Artificial Enzyme Membranes, Transport, Memory, and Oscillatory Phenomena (Springer, Berlin, 1975), pp. 115–150

    Google Scholar 

  9. R.A. Barrio, C. Varea, J.L. Aragón, P.K. Maini, A two-dimensional numerical study of spatial pattern formation in interacting Turing systems. Bull. Math. Biol. 61(3), 483–505 (1999)

    Article  Google Scholar 

  10. B. Ermentrout, Stripes or spots? Nonlinear effects in bifurcation of reaction-diffusion equations on the square. Proc. Math. Phys. Sci. 434(1891), 413–417 (1991)

    MATH  Google Scholar 

  11. T.E. Woolley, R.E. Baker, P.K. Maini, J.L. Aragón, R.A. Barrio, Analysis of stationary droplets in a generic Turing reaction-diffusion system. Phys. Rev. E 82(5), 051929 (2010)

    Google Scholar 

  12. H. Meinhardt, Models of Biological Pattern Formation (Academic Press, London, 1982)

    Google Scholar 

  13. H. Meinhardt, The Algorithmic Beauty of Sea Shells (Springer, Berlin, 2009)

    Book  Google Scholar 

  14. J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, vol. 2, 3rd edn. (Springer, Cham, 2003)

    Google Scholar 

  15. G.F. Oster, N. Shubin, J.D. Murray, P. Alberch, Evolution and morphogenetic rules: the shape of the vertebrate limb in ontogeny and phylogeny. Evolution 42(5), pp. 862–884 (1988)

    Article  Google Scholar 

  16. J. Bard, I. Lauder, How well does Turing’s theory of morphogenesis work? J. Theor. Biol. 45(2), 501–31 (1974)

    Article  Google Scholar 

  17. J.D. Murray, Parameter space for Turing instability in reaction diffusion mechanisms: a comparison of models. J. Theor. Biol. 98 (1), 143 (1982)

    Article  MathSciNet  Google Scholar 

  18. R. Dillon, P.K. Maini, H.G. Othmer, Pattern formation in generalized Turing systems. J. Math. Biol. 32(4), 345–393 (1994)

    Article  MathSciNet  Google Scholar 

  19. E.J. Crampin, E.A. Gaffney, P.K. Maini, Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull. Math. Biol. 61(6), 1093–1120 (1999)

    Article  Google Scholar 

  20. S. Kondo, R. Asai, A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768 (1995)

    Article  Google Scholar 

  21. S.A. Newman, R. Bhat, Activator-inhibitor dynamics of vertebrate limb pattern formation. Birth Defects Res. C Embryo Today 81(4), 305–319 (2007)

    Article  Google Scholar 

  22. S. Sick, S. Reinker, J. Timmer, T. Schlake, WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314(5804), 1447–1450 (2006)

    Article  Google Scholar 

  23. A. Garfinkel, Y. Tintut, D. Petrasek, K. Boström, L.L. Demer, Pattern formation by vascular mesenchymal cells. Proc. Nat. Acad. Sci. 101(25), 9247 (2004)

    Article  Google Scholar 

  24. A. Nakamasu, G. Takahashi, A. Kanbe, S. Kondo, Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proc. Nat. Acad. Sci. 106(21), 8429–8434 (2009)

    Article  Google Scholar 

  25. T.E. Woolley, Pattern production through a chiral chasing mechanism. Phys. Rev. E 96(3), 032401 (2017)

    Google Scholar 

  26. T.E. Woolley, P.K. Maini, E.A. Gaffney, Is pigment cell pattern formation in zebrafish a game of cops and robbers? Pigment Cell Melanoma Res. 27(5), 686–687 (2014)

    Article  Google Scholar 

  27. T. Woolley, Pattern production through a chiral chasing mechanism. Phys. Rev. E 96, 32401 (2017)

    Article  Google Scholar 

  28. T.E. Woolley, R.E. Baker, E.A. Gaffney, P.K. Maini, Stochastic reaction and diffusion on growing domains: understanding the breakdown of robust pattern formation. Phys. Rev. E 84(4), 046216 (2011)

    Google Scholar 

  29. T. Kurics, D. Menshykau, D. Iber, Feedback, receptor clustering, and receptor restriction to single cells yield large Turing spaces for ligand-receptor-based Turing models. Phys. Rev. E 90(2), 022716 (2014)

    Google Scholar 

  30. V. Castets, E. Dulos, J. Boissonade, P. De Kepper, Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64(24), 2953–2956 (1990)

    Article  Google Scholar 

  31. J.E. Pearson, W. Horsthemke, Turing instabilities with nearly equal diffusion coefficients. J. Chem. Phys. 90, 1588 (1989)

    Article  MathSciNet  Google Scholar 

  32. I. Lengyel, I.R. Epstein, A chemical approach to designing Turing patterns in reaction-diffusion systems. Proc. Nat. Acad. Sci. 89(9), 3977–3979 (1992)

    Article  Google Scholar 

  33. N. Tompkins, N. Li, C. Girabawe, M. Heymann, G.B. Ermentrout, I.R. Epstein, S. Fraden, Testing Turing’s theory of morphogenesis in chemical cells. Proc. Natl. Acad. Sci. 111(12), 4397–4402 (2014)

    Article  Google Scholar 

  34. B.N. Nagorcka, Wavelike isomorphic prepatterns in development. J. Theor. Biol. 137(2), 127–162 (1989)

    Article  MathSciNet  Google Scholar 

  35. J.R. Mooney, B.N. Nagorcka, Spatial patterns produced by a reaction-diffusion system in primary hair follicles. J. Theor. Biol. 115(2), 299–317 (1985)

    Article  MathSciNet  Google Scholar 

  36. S. Kondo, M. Iwashita, M. Yamaguchi, How animals get their skin patterns: fish pigment pattern as a live Turing wave. Int. J. Dev. Biol. 53(5–6), 851 (2009)

    Article  Google Scholar 

  37. G.F. Oster, J.D. Murray, A.K. Harris, Mechanical aspects of mesenchymal morphogenesis. Development 78(1), 83–125 (1983)

    MATH  Google Scholar 

  38. J.D. Murray, G.F. Oster, A.K. Harris, A mechanical model for mesenchymal morphogenesis. J. Math. Biol. 17(1), 125–129 (1983)

    Article  Google Scholar 

  39. E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  40. K.J. Painter, P.K. Maini, H.G. Othmer, Stripe formation in juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis. Proc. Nat. Acad. Sci. 96(10), 5549 (1999)

    Article  Google Scholar 

  41. K.J. Painter, P.K. Maini, H.G. Othmer, Development and applications of a model for cellular response to multiple chemotactic cues. J. Math. Biol. 41(4), 285–314 (2000)

    Article  MathSciNet  Google Scholar 

  42. L. Wolpert, Positional information and pattern formation. Curr. Top. Dev. Biol. 6, 183–224 (1971)

    Article  Google Scholar 

Download references

Acknowledgements

PKM and TEW would like to thank the Mathematical Biosciences Institute (MBI) at Ohio State University, for financially supporting this research through the National Science Foundation grant DMS 1440386. TEW would also like to acknowledge financial support from St John’s College, Oxford and BBSRC grant BKNXBKOO BK00.16.

The zebra skin, serval, arrow frog and x-ray pictures from Fig. 7.1 are used under creative commons license 2.0. They were downloaded from flickr.com and owned by David Richards, Vince Smith, The Reptilarium and Rahim Packir Saibo, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip K. Maini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maini, P.K., Woolley, T.E. (2019). The Turing Model for Biological Pattern Formation. In: Bianchi, A., Hillen, T., Lewis, M., Yi, Y. (eds) The Dynamics of Biological Systems. Mathematics of Planet Earth, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-22583-4_7

Download citation

Publish with us

Policies and ethics