Advertisement

Omics—A Potential Tool for Oil Palm Improvement and Productivity

  • Umi Salamah RamliEmail author
  • Abrizah Othman
  • Noor Idayu Mhd Tahir
  • Benjamin Yii Chung Lau
  • Syahanim Shahwan
  • Hasliza Hassan
  • Zain Nurazah
  • Shahirah Balqis Dzulkafli
  • Nurul Liyana Rozali
  • Nur Ain Ishak
  • Ravigadevi Sambanthamurthi
  • Ghulam Kadir Ahmad Parveez
  • Ahmad Kushairi
Chapter
  • 34 Downloads
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Palm oil is one of the major sources of edible oils and oleochemical feedstocks. Sustainable oil palm cultivation which is set to boost production requires effective and innovative strategies. There is a continuous effort to increase the yield and productivity of the oil palm through conventional breeding and by cloning super planting materials. Hitherto, oil palm breeders had limited choice of tools to evaluate the important traits of the palm such as resistance to diseases which has constrained the breeding programme. Genomics-based technologies have sped up the process. Post-genomics tools such as transcriptomics, proteomics and metabolomics are well-established technologies and have been used as phenotyping tools to elucidate the mechanisms involved in fruit ripening and fatty acid synthesis, all of which promise to facilitate and speed up the pace of oil palm improvement. Oil palm diseases also have major economic repercussions for the oil palm industry. Progress in omics studies aimed to advance the knowledge in plant-pathogen interactions is discussed, and the process of discovering novel biomarkers and potential therapeutic targets may be shortened using proteomic and metabolomic approaches. Information and the discoveries from these studies have opened the door for the development of an oil palm omics database, which gathers proteome and metabolome data for studies of oil palm systems biology.

Keywords

Oil palm Omics Proteomics Metabolomics Crop productivity 

Notes

Acknowledgements

The authors wish to thank the Director-General of MPOB for permission to publish this chapter.

References

  1. Acharjee A, Kloosterman B, Visser RGF, Maliepaard C (2016). Integration of multi-omics data for prediction of phenotypic traits using random forest. BMC Bioinform 17(Suppl 5) 180:363–373Google Scholar
  2. Alexandersson E, Jacobson D, Vivier MA, Weckwerth W, Andreasson E (2014) Field-omics-understanding large-scale molecular data from field crops. Front Plant Sci 5(286):1–6Google Scholar
  3. Alizadeh F, Abdullah SNA, Khodavandi A, Abdullah F, Yusuf UK, Chong PP (2011) Differential expression of oil palm pathology genes during interactions with Ganoderma boninense and Trichoderma harzianum. J Plant Physiol 168:1106–1113PubMedCrossRefGoogle Scholar
  4. Alm EKH (2007) Success stories of agricultural long-term experiments. In: Kungl. Skogs- Och Lantbruksakademiens Tidskrift, 146. ISBN: 978-91-85205-61-5Google Scholar
  5. Al-Obaidi J, Mohd-Yusuf Y, Razali N, Jayapalan J, Tey C-C, Md-Noh N, Junit S, Othman R, Hashim O (2014) Identification of proteins of altered abundance in oil palm infected with Ganoderma boninense. Int J Mol Sci 15:5175–5192PubMedPubMedCentralCrossRefGoogle Scholar
  6. Azahar TM, Idris AS, Abu Hassan D, Norazlin I (2014) Assessment of basal stem rot disease distribution in palm oil plantation using geographical information system. J Sci Technol 81–92Google Scholar
  7. Azzeme AM, Abdullah SNA, Aziz MA, Wahab PEM (2016) Oil palm leaves and roots differ in physiological response, antioxidant enzyme activities and expression of stress-responsive genes upon exposure to drought stress. Acta Physiol Plant 38(52):1–12Google Scholar
  8. Barcelos E, Rios SD, Cunha RN, Lopes R, Motoike SY, Babiychuk E, Skirycz A, Kushnir S (2015) Oil palm natural diversity and the potential for yield improvement. Front Plant Sci 6(190):1–16Google Scholar
  9. Bersanelli M, Mosca E, Remondini D, Giampieri E, Sala C, Castellani G, Milanesi L (2016) Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinform 15:167–177Google Scholar
  10. Billotte N,Marseillac N,Risterucci AM, Adon B, Brottier P, Baurens FC, Singh R, Herran A, Asmady H, Billot C, Amblard P, Durand-Gasselin T, Courtois B, Asmono D, Cheah SC, Rohde W, Ritter E, Charrier A (2005) Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 110:754–765Google Scholar
  11. Bird A (2002) DNA methylation patternsand epigenetic memory. Genes Dev 16(1):6–21PubMedCrossRefGoogle Scholar
  12. Bourgis F, Kilaru A, Cao X, Ngando-Ebongue G, Drira N, Ohlrogge JB (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci 108(30):12527–12532PubMedCrossRefGoogle Scholar
  13. Breton F, Hasan Y, Hariadi S, Lubis Z, De Franqueville H (2006) Characterization of parameters for the development of an early screening test for basal stem rot tolerance in oil palm progenies. J Oil Palm Res (Special Issue):24–36Google Scholar
  14. Chasman D, Siahpirani AF, Roy S (2016) Network-based approaches for analysis of complex biological systems. Curr Opin Biotech 39:157–166PubMedCrossRefGoogle Scholar
  15. Cheah SC, Abdullah SNA, Ooi LCL, Rahimah AR, Maria M (1993) Detection of DNA variability in the oil palm using RFLP probes. 1991 PORIM international palm oil conference—agriculture (module 1). Kuala Lumpur, Malaysia, pp 144–150Google Scholar
  16. Chen R, Snyder M (2013) Promise of personalized omics to precision medicine. Wiley Interdiscip Rev Syst Biol Med 5(1):73–82PubMedCrossRefGoogle Scholar
  17. Chong KL, Kanniah KD, Pohl C, Tan KP (2017) A review of remote sensing applications for oil palm studies. Geo Spatial Inform Sci 20(2):184–200CrossRefGoogle Scholar
  18. Colmsee C, Mascher M, Czauderna T, Hartmann A, Schlüter U, Zellerhoff N, Schmitz J, Bräutigam A, Pick TR, Alter P, Gahrtz M, Witt S, Fernie AR, Börnke F, Fahnenstich H, Bucher M, Dresselhaus T, Weber APM, Schreiber F, Scholz U, Sonnewald U (2012) OPTIMAS-DW: a comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize. BMC Plant Biol 12(245):1–10Google Scholar
  19. Cook CE, Bergman MT, Finn RD, Cochrane G, Birney E, Apweiler R (2016) The European Bioinformatics Institute in 2016: data growth and integration. Nucleic Acids Res 44(Database):D20–D26Google Scholar
  20. Corley RHV (2009) How much palm oil do we need? Environ Sci Policy 12:134–139CrossRefGoogle Scholar
  21. Daim LDJ, Tek Ooi, Ithnin N, Mohd Yusof H, Kulaveerasingam H, Majid NA, Karsani SA (2015) Comparative proteomic analysis of oil palm leaves infected with Ganoderma boninense revealed changes in proteins involved in photosynthesis, carbohydrate metabolism, immunity and defense. Electrophoresis 36(15):1699–1710CrossRefGoogle Scholar
  22. Durand-Gasselin T, Asmady H, Flori A, Jacquemard JC, Hayun Z, And Breton F, De Franqueville H (2005) Possible sources of genetic resistance in oil palm (Elaeis guineensis Jacq.) to basal stem rot caused by G. boninense-prospects for future breeding. Mycopathologia 159:93–100PubMedCrossRefGoogle Scholar
  23. Dussert S, Guerin C, Andersson M, Joët T, Tranbarger TJ, Pizot M, Sarah G, Omore A, Durand-Gasselin T, Morcillo F (2013) Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. Plant Physiol 162:1337–1358PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dzulkafli SB, Abrizah O, Benjamin LYC, Syahanim S, Idris AS, Ramli US (2016) Optimization of protein extraction from Ganoderma boninense for SDS PAGE analysis. Trans Persatuan Genetik Malaysia 3:193–197Google Scholar
  25. Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fiocchi C (2014) Integrating omics: the future of IBD? Dig Dis 32(Suppl 1):96–102Google Scholar
  27. Fondi M, Liò P (2015) Multi-omics and metabolic modelling pipelines: challenges and tools for systems microbiology. Microbiol Res 171:52–64PubMedCrossRefGoogle Scholar
  28. Ganiger M, Walker DR, Chen ZY (2013) Proteomics based study of soybean and Phakopsora pachyrhizi interaction. In: Proceedings of the Twelfth I. E. Melhus Graduate Student Symposium. Annual Meeting of the American Phytopathological Society (APS), 6 August 2012 in Providence, RI. Plant Health Prog, pp 1–13.  https://doi.org/10.1094/php-2013-1125-01-rs
  29. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotech 22(5):245–252CrossRefGoogle Scholar
  30. Han Y, Garcia BA (2013) Combining genomic and proteomic approaches for epigenetics research. Epigenomics 5(4):439–452PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hasan Y, Turner PD (1998) The comparative importance of different oil palm tissue as infection sources of basal stem rot in replantings. Planter 74(864):119–135Google Scholar
  32. Hassan H, Tahir NI, Ramli US (2016) Proteome and metabolome assessment of oil palm fruit development for advanced breeding perspective. Trans Persatuan Genetik Malaysia 3:199–204Google Scholar
  33. Hassan H, Mohd Din A, Weckwerth W and Ramli US (2019) Deciphering key proteins of oil palm (Elaeis guineensis Jacq.) fruit mesocarp development by proteomics and chemometrics. Electrophoresis 40(2):254–265Google Scholar
  34. Haug K, Salek RM, Conesa P, Hastings J, De Matos P, Rijnbeek M, Mahendraker T, Williams M, Neumann S, Rocca-Serra P, Maguire E, González-Beltrán A, Sansone S, Griffin JL, Steinbeck C (2013) MetaboLights -an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucl Acids Res 41(D1):D781–D786PubMedCrossRefGoogle Scholar
  35. Ho CL, Tan YC, Yeoh KA, Ghazali AK, Yee WY, Hoh CC (2016) De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.). BMC Genom 17(66):1–19Google Scholar
  36. Hong J, Yang L, Zhang D, Shi J (2016) Plant metabolomics: an indispensable system biology tool for plant science. Int J Mol Sci 17(767):1–16Google Scholar
  37. Idris AS, Kushairi A, Ismail S, Ariffin D (2004) Selection forpartial resistance in oil palm progenies to Ganoderma basal stem rot. J Oil Palm Res 16(1):12–18Google Scholar
  38. Idris AS, Nasyarudin MNM, Maizatul SM, Zaiton S (2010) Gano EB1—A bacterial biocontrol agent for Ganoderma in oil palm. MPOB Inf. Ser. MPOB TT No. 443Google Scholar
  39. Idris AS, Mior MHAZ, Maizatul SM, Kushairi A (2011) Survey on status of Ganoderma disease of oil palm. In: Proceeding of MPOB International Palm Oil Conference (PIPOC 2011), Malaysian Palm Oil Board, Kuala Lumpur, Malaysia, 15–17 November 2011, pp 235–238Google Scholar
  40. Jaligot E, Beulé T, Rival A (2002) Methylation-sensitive RFLPs: characterisation of two oil palm markers showing somaclonal variation-sensitive associated polymorphism. Theor Appl Genet 104:1263–1269PubMedCrossRefGoogle Scholar
  41. Jones P, Côté RG, Martens L, Quinn AF, Taylor CF, Derache W, Hermjakob H, Apweiler R (2006) PRIDE: a public repository of protein and peptide identifications for the proteomics community. Nucleic Acids Res. 34(Database issue):D659–D663Google Scholar
  42. Keurentjes JJ (2009) Genetical metabolomics: closing in on phenotypes. Curr Opin Plant Biol 2:223–230CrossRefGoogle Scholar
  43. Krumsiek J, Bartel J, Theis FJ (2016) Computational approaches for systems metabolomics. Curr Opin Biotechnol 39:198–206PubMedCrossRefGoogle Scholar
  44. Lau BYC, Clerens S, Morton JD, Dyer JM, Deb-Choudhury S, Ramli US (2015) Method developments to extract proteins from oil palm chromoplast for proteomic analysis. Springer Plus 4:791PubMedCrossRefGoogle Scholar
  45. Lau BYC, Clerens S, Morton JD, Dyer JM, Deb-Choudhury S, Ramli US (2016) Application of mass spectrometry approach to detect the presence of fatty acid biosynthetic phosphopeptides. Protein J 35:163–170PubMedCrossRefGoogle Scholar
  46. Lau BYC, Morton JD, Deb-Choudhury S, Clerens S, Dyer JM, Ramli US (2017) Differential expression analysis of oil palm fatty acid biosynthetic enzymes with gel-free quantitative proteomics. J Oil Palm Res 29(1):23–34CrossRefGoogle Scholar
  47. Lea PJ, Sodek L, Parry MAJ, Shewry R, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150:1–26CrossRefGoogle Scholar
  48. Lim T, Chung G, Ko W (1992) Basal stem rot of oil palm caused by Ganoderma boninense. Plant Pathol Bull 1(3):147–152Google Scholar
  49. Loei H, Lim J, Tan M, Lim TK, Lin QS, Chew FT, Kulaveerasingam H, Cung MC (2013) Proteomic analysis of the oil palm fruit mesocarp reveals elevated oxidative phosphorylation activity is critical for increased storage oil Production. J Proteome Res 12:5096–5109PubMedCrossRefGoogle Scholar
  50. Maier T, Güell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583:3966–3973PubMedCrossRefGoogle Scholar
  51. Malaysian Palm Oil Board (MPOB) (2011) Palm oil: the way forward. EntryGoogle Scholar
  52. Malaysian Standard MS 2099 (2008) Oil palm clones for commercial planting—specification for ortet selection. Department of Standards MalaysiaGoogle Scholar
  53. Mann M, Kelleher NL (2008) Precision proteomics: the case for high resolution and high mass accuracy. PNAS 105(47):18131–18138CrossRefGoogle Scholar
  54. Martens L, Hermjakob H, Jones P, Adamski M, Taylor C, States D, Gevaert K, Vandekerckhove J, Apweiler R (2005) PRIDE: the proteomics identifications database. Proteomics 5:3537–3545PubMedCrossRefGoogle Scholar
  55. Mayes S, James C, Horner SF, Jack PL, Corley RHV (1996) The application of restriction fragment length polymorphism for the genetic fingerprinting of oil palm (Elaeis guineensis). Mol Breed 2:175–180CrossRefGoogle Scholar
  56. Mayes S, Jack PL, Marshall D, Corley RHV (1997) Construction of a RFLP genetic linkage map for oil palm (Elaeis guineensis Jacq.). Genome 40:116–122PubMedCrossRefGoogle Scholar
  57. Mayes S, Jack PL, Corley RHV (2000) The use of molecular markers to investigate the genetic structure of an oil palm breeding programme. Heredity 85:288–293PubMedCrossRefGoogle Scholar
  58. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46PubMedCrossRefGoogle Scholar
  59. Mohamad Arif AM, Abrizah O, Zetty Norhana BY, Syahanim S, Idris AS, Mohd Din A, Sambanthamurthi R (2007) Molecular and biochemical approaches to understanding oil palm-Ganoderma interactions. In: Proceeding of MPOB International Palm Oil Conference (PIPOC 2007), Kuala Lumpur Convention Centre, Kuala Lumpur, Malaysia, pp 228–246Google Scholar
  60. Murphy DJ (2014) The future of oil palm as a major global crop: opportunities and challenges. J Oil Palm Res 26(1):1–24Google Scholar
  61. Navaratnam SJ, Chee KL (1965) Root inoculation of oil palm seedlings with Ganoderma sp. Plant Dis 489:1011–1012Google Scholar
  62. Neoh BK, Teh HF, Ng TLM, Tiong SH, Thang YM, Ersad MA, Mohamed M, Chew FT, Kulaveerasingam H, Appleton DR (2013) Profiling of metabolites in oil palm mesocarp at different stages of oil biosynthesis. J Agric Food Chem 61:1920–1927PubMedCrossRefGoogle Scholar
  63. Nur-Ain I, Nurazah Z, Rozali NL, Halim MA, Rosli R, Abrizah O, Ramli US, Tahir NI (2015) Construction of integrated oil palm metabolome chemical resources library. In: Proceeding of MPOB International Palm Oil Conference (PIPOC 2015), Kuala Lumpur Convention Centre, Kuala Lumpur, Malaysia, 6–8 October 2015, pp 381–385Google Scholar
  64. Nurazah Z, Idris AS, Kushairi A, Ramli US (2013) Metabolite profiling of oil palm towards understanding basal stem rot (BSR) disease. J Oil Palm Res 25(1):58–71Google Scholar
  65. Nurazah Z, Idris AS, Kushairi A, Amiruddin MD, Abrizah O, Ramli US (2017) Metabolomics unravel differences between Cameroon dura and Deli dura oil palm (Elaeis guineensis Jacq.) genetic backgrounds against basal stem rot. J Oil Palm Res 29(2):227–241Google Scholar
  66. OECD/FAO (2017) OECD-FAO Agricultural Outlook 2017–2026. OECD Publishing, Paris. http://dx.doi.org/10.1787/agr_outlook-2017-en
  67. Oil World Annual (2017) Palm oil: world production (1000T), Yields (T/ha) and Mature Area (1000 ha). Oil World, ISTA Mielke GmbH, Hamburg, GermanyGoogle Scholar
  68. Ong-Abdullah M, Ordway JM, Jiang N, Ooi SE, Sarpan N, Azimi N, Hashim AT, Ishak Z, Rosli SK, Malike FA, Bakar NA, Marjuni M, Abdullah N, Yaakub Z, Amiruddin MD, Nookiah R, Singh R, Low ET, Chan KL, Azizi N, Smith SW, Bacher B, Budiman MA, Van Brunt A, Wischmeyer C, Beil M, Hogan M, Lakey N, Lim CC, Arulandoo X, Wong CK, Choo CN, Wong WC, Kwan YY, Alwee SS, Sambanthamurthi R, Martienssen RA (2015) Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525(7570):533–537PubMedPubMedCentralCrossRefGoogle Scholar
  69. Oo KC, Teh SK, Khor HT, Ong ASH (1985) Fatty acid synthesis in the oil palm (Elaeis guineensis): incorporation of acetate by tissue slices of the developing fruit. Lipids 20(4):205–210CrossRefGoogle Scholar
  70. Ooi THE, Yeap WC, Daim LDJ, Ng BZ, Lee FC, Othman AM, Appleton DR, Chew FT, Kulaveerasingam H (2015) Differential abundance analysis of mesocarp protein from high- and low-yielding oil palms associates non-oil biosynthetic enzymes to lipid biosynthesis. Proteome Sci 13:28PubMedPubMedCentralCrossRefGoogle Scholar
  71. Parveez GKA, Rasid OA, Masani MYA, Sambanthamurthi R (2015) Biotechnology of oil palm: strategies towards manipulation of lipid content and composition. Plant Cell Rep 34(4):533–543PubMedCrossRefGoogle Scholar
  72. Rajanaidu N, Kushairi A, Rafii M, Din M, Maizura I, Jalani B (2000) Oil palm breeding and genetic resources. In: Basiron YB, Jalani B, Chan KW (eds) Advances in oil palm research. Malaysian Palm Oil Board, Kuala Lumpur, pp 171–227Google Scholar
  73. Ramli US, Baker DS, Quant PA, Harwood JL (2002a) Control mechanisms operating for lipid biosynthesis differ in oil-palm (Elaeis guineensis Jacq.) and olive (Olea europaea L.) callus cultures. Biochem J 364(1):385–391Google Scholar
  74. Ramli US, Baker DS, Quant PA, Harwood JL (2002b) Use of control analysis to study the regulation of plant lipid biosynthesis. Biochem Soc Trans 30:1043–1046PubMedCrossRefGoogle Scholar
  75. Ramli US, Salas JJ, Quant PA, Harwood JL (2009) Use of metabolic control analysis to give quantitative information on control of lipid biosynthesis in the important oil crop, Elaeis guineensis (oil palm). New Phytol 184(2):330–339PubMedCrossRefGoogle Scholar
  76. Ramli US, Lau BYC, Tahir NI, Shahwan S, Hassan H, Nurazah Z, Rozali NL, Dzulkafli S, Nur-Ain I, Abrizah O (2016) Proteomics and metabolomics: spearheading oil palm improvement and sustainability. Planter 92(1087):727–737Google Scholar
  77. Rampitsch C, Bykova NV, Mccallum B, Beimcik E, Ens W (2006) Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a compatible host-pathogen interaction. Proteomics 6:1897–1907PubMedCrossRefGoogle Scholar
  78. Rees RW, Flood J, Hasan Y, Potter U, Cooper RM (2009) Basal stem rot of oil palm (Elaeis guineensis); mode of root infection and lower stem invasion by Ganoderma boninense. Plant Pathol 58(5):982–989Google Scholar
  79. Römpp A, Wang R, Albar JP, Urbani A, Hermjakob H, Spengler B, Vizcaíno JA (2015) A public repository for mass spectrometry imaging data. Anal Bioanal Chem 407:2027–2033PubMedCrossRefGoogle Scholar
  80. Rozali NL, Yarmo MA, Idris AS, Kushairi A, Ramli US (2017) Metabolomics differentiation of oil palm (Elaeis guineensis Jacq.) spear leaf with contrasting susceptibility to Ganoderma boninense. Plant Omics 10:45–52CrossRefGoogle Scholar
  81. Sambanthamurthi R, Abrizah O, Ramli US (1999) Biochemical factors that control oil composition in the oil palm. J Oil Palm Res (Special Issue) 24–33Google Scholar
  82. SambanthamurthI R, Sundram K, Tan YA (2000) Chemistry and biochemistry of palm oil. Prog Lipid Res 39:507–558Google Scholar
  83. Sariah M, Hussin MZ, Miller RNG, Holderness M (1994) Pathogenicity of Ganoderma boninense tested by inoculation of oil palm seedlings. Plant Pathol 43(3):507–510CrossRefGoogle Scholar
  84. Sass S, Buettner F, Mueller NS, Theis FJ (2013) A modular framework for gene set analysis integrating multilevel omics data. Nucleic Acids Res 41(21):9622–9633PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sawada Y, Hirai MY (2013) Integrated LC-MS/MS system for plant metabolomics. Comput Struct Biotech J 4(5):1–6CrossRefGoogle Scholar
  86. Shenton MR, Berberich T, Kamo M, Yamashita T, Taira H, Terauchi R (2012) Use of intercellular washing fluid to investigate the secreted proteome of the rice—Magnaporthe interaction. J Plant Res 125:311–316PubMedCrossRefGoogle Scholar
  87. Singh R, Cheah SC (1999) Analysis of the inheritance of AFLP markers in an interspecific cross of oil palm using the pseudo-testcross strategy. J Oil Palm Res (Special Issue):64–73Google Scholar
  88. Singh R, Zaki NM, Ting NC, Tan SG, Low ETL, Ithnin M, Cheah SC (2008) Exploiting an oil palm EST database for the development of gene-derived SSR markers and their exploitation for assessment of genetic diversity. Biologia 63(2):227–235CrossRefGoogle Scholar
  89. Singh R, Ong-Abdullah M, Low ETL, Manaf MAA, Rosli R, Nookiah R, Ooi LCL, Ooi SE, Chan KL, Halim MA, Azizi N, Jayanthi N, Bacher B, Lakey N, Smith SW, He D, Hogan M, Budiman MA, Lee EK, Desalle R, Kudrna D, Goicoechea JL, Wing RA Wilson RK, Fulton RS, Ordway JM, Martienssen RA, Sambanthamurthi R (2013a) Oil palm genome sequences reveals divergence of interfertile species in old and new worlds. Nature 500(7462):335–339Google Scholar
  90. Singh R, Low ETL, Ooi LCL, Ong-Abdullah M, Ting NC, Jayanthi N, Nookiah R, Amiruddin Md, Rosli R, Manaf MAA, Chan KL, Halim MA, Azizi N, Lakey N, Smith SW, Budiman MA, Hogan M, Bacher B, Brunt AV, Wang C, Ordway JM, Sambanthamurthi R, Martienssen RA (2013b) The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature 500(7462):340–344PubMedPubMedCentralCrossRefGoogle Scholar
  91. Soh AC, Mayes S, Roberts JA (2017) Oil palm breeding. Genetics and genomics. CRC Press, USACrossRefGoogle Scholar
  92. Sundram K, Sambanthamurthi R, Tan YA (2003) Palm fruit chemistry and nutrition. Asia Pacific J Clin Nutr 12(3):355–362Google Scholar
  93. Sung J, Wang Y, Chandrasekaran S, Witten DM, Price ND (2012) Molecular signatures from omics data: from chaos to consensus. Biotech J 7:946–957CrossRefGoogle Scholar
  94. Susanto A, Sudharto PS, Purba RY (2005) Enhancing biological control of basal stem rot disease (Ganoderma boninense) in oil palm plantations. Mycopathologia 59(1):153–7Google Scholar
  95. Syahanim S, Abrizah O, Manaf MAA, Idris AA, Amiruddin MD (2013) Identification of differentially expressed proteins in oil palm seedlings artificially infected with Ganoderma: a proteomics approach. J Oil Palm Res 25(3):298–304Google Scholar
  96. Tahir NI, Shaari K, Abas F, Parveez GKA, Zamzuri I, Ramli US (2012) Characterization of apigenin and luteolin derivatives from oil palm (Elaeis guineensis Jacq.) leaf using LC-ESI-MS/MS. J Agric Food Chem 60(45):11201–11210Google Scholar
  97. Tahir NI, Shaari K, Abas F, Zamzuri I, Tarmizi AH, Amiruddin MD, Parveez GKA, Ramli US (2016) Metabolome analysis of oil palm clone P325 of different planting trials. J Oil Palm Res 28(4):431–441CrossRefGoogle Scholar
  98. Tan HS, Jacoby RP, Ong-Abdullah M, Taylor NL, Liddell S, Wong WC, Chiew FC (2017) Proteomic profiling of mature leaves from oil palm (Elaeis guineensis Jacq.). Electrophoresis 38:1147–1153PubMedCrossRefGoogle Scholar
  99. Tee SS, Tan YC, Abdullah F, Ong-Abdullah M, Ho CL (2013) Transcriptome of oil palm (Elaeis guineensis Jacq.) roots treated with Ganoderma boninense. Tree Genet Genomes 9:377–386CrossRefGoogle Scholar
  100. Teh HF, Neoh BK, Hong MPL, Low JYS, Ng TLM, Ithnin N, Thang YM, Mohamed M, Chew FT, Yusof HM (2013) Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp. PLoS ONE 8:e61344PubMedPubMedCentralCrossRefGoogle Scholar
  101. Teh HF, Neoh BK, Wong YC, Kwong QB, Ooi TEK, Ng TLM, Tiong SH, Low JYS, Danial AD, Ersad MA, Kulaveerasingam H, Appleton DR (2014) Hormones, polyamines, and cell wall metabolism during oil palm fruit mesocarp development and ripening. J Agric Food Chem 62(32):8143–8152PubMedCrossRefGoogle Scholar
  102. Ting NC, Jansen J, Mayes S, Massawe F, Sambanthamurthi R, Ooi LCL, Chin CW, Arulandoo X, Seng TY, Alwee SS, Ithnin M, Singh R (2014) High density SNP and SSR-based genetic maps of two independent oil palm hybrids. BMC Genomics 15(309):1–11Google Scholar
  103. Tohge T, Fernie AR (2015) Metabolomics-Inspired Insight into Developmental, Environmental and Genetic Aspects of Tomato Fruit Chemical Composition and Quality. Plant Cell Physiol 56(9):1681–1696PubMedCrossRefGoogle Scholar
  104. Tranbarger TJ, Dusser S, Joet T, Argout X, Summo M, Champion A, Cros D, Omore A, Nouy B, Morcillo F (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. Plant Physiol 156(2):564–584PubMedPubMedCentralCrossRefGoogle Scholar
  105. Turner PD, Gillbanks RA (2003) Field diseases and disorders of oil palm. In: Oil palm cultivation and management, vol 10. The Incorporated Society of Planters, pp 625–727Google Scholar
  106. Vranova E, Hirsch-Hoffmann M, Gruissem W (2011) AtIPD: a curated database of Arabidopsis isoprenoid pathway models and genes for isoprenoid network analysis. Plant Physiol 156:1655–1656PubMedPubMedCentralCrossRefGoogle Scholar
  107. Weckwerth W (2011) Green systems biology—rom single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteomics 75:284–305PubMedCrossRefGoogle Scholar
  108. Wienkoop S, Morgenthal K, Wolschin F, Scholz M, Selbig J, Weckwerth W (2008) Integration of metabolomic and proteomicphenotypes. Mol Cell Proteomics 7(9):1725–1736PubMedPubMedCentralCrossRefGoogle Scholar
  109. Woittiez LS, Van Wij MT, Slingerland M, Van Noordwijk M, Giller KE (2017) Yield gaps in oil palm: a quantitative review of contributing factors. Eur J Agron 83:57–77CrossRefGoogle Scholar
  110. Wong YC, Teh HF, Mebus K, Ooi TEK, Kwong QB, Koo KL, Ong CK, Mayes S, Chew FT, Appleton DR, Kulaveerasingam H (2017) Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm. BMC Genomics 18:1–13Google Scholar
  111. Point Projects (EPP) 2: Increase the national FFB yield. National Key Economic Areas (NKEA). Ministry of Plantation Industries and Commodities, pp 9–10Google Scholar
  112. Zhou W, Chen T, Chong Z, Rohrdanz MA, Melott JM, Wakefield C, Zeng J, Weinstein JN, Meric-Bernstam F, Mills GB, Chen K (2015) TransVar: a multilevel variant annotator for precision genomics. Nat Methods 12(11):1002–1003PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Umi Salamah Ramli
    • 1
    Email author
  • Abrizah Othman
    • 1
  • Noor Idayu Mhd Tahir
    • 1
  • Benjamin Yii Chung Lau
    • 1
  • Syahanim Shahwan
    • 1
  • Hasliza Hassan
    • 1
  • Zain Nurazah
    • 1
  • Shahirah Balqis Dzulkafli
    • 1
  • Nurul Liyana Rozali
    • 1
  • Nur Ain Ishak
    • 1
  • Ravigadevi Sambanthamurthi
    • 1
  • Ghulam Kadir Ahmad Parveez
    • 1
  • Ahmad Kushairi
    • 1
  1. 1.Malaysian Palm Oil BoardKajangMalaysia

Personalised recommendations