Skip to main content

Omics—A Potential Tool for Oil Palm Improvement and Productivity

  • Chapter
  • First Online:
The Oil Palm Genome

Abstract

Palm oil is one of the major sources of edible oils and oleochemical feedstocks. Sustainable oil palm cultivation which is set to boost production requires effective and innovative strategies. There is a continuous effort to increase the yield and productivity of the oil palm through conventional breeding and by cloning super planting materials. Hitherto, oil palm breeders had limited choice of tools to evaluate the important traits of the palm such as resistance to diseases which has constrained the breeding programme. Genomics-based technologies have sped up the process. Post-genomics tools such as transcriptomics, proteomics and metabolomics are well-established technologies and have been used as phenotyping tools to elucidate the mechanisms involved in fruit ripening and fatty acid synthesis, all of which promise to facilitate and speed up the pace of oil palm improvement. Oil palm diseases also have major economic repercussions for the oil palm industry. Progress in omics studies aimed to advance the knowledge in plant-pathogen interactions is discussed, and the process of discovering novel biomarkers and potential therapeutic targets may be shortened using proteomic and metabolomic approaches. Information and the discoveries from these studies have opened the door for the development of an oil palm omics database, which gathers proteome and metabolome data for studies of oil palm systems biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharjee A, Kloosterman B, Visser RGF, Maliepaard C (2016). Integration of multi-omics data for prediction of phenotypic traits using random forest. BMC Bioinform 17(Suppl 5) 180:363–373

    Google Scholar 

  • Alexandersson E, Jacobson D, Vivier MA, Weckwerth W, Andreasson E (2014) Field-omics-understanding large-scale molecular data from field crops. Front Plant Sci 5(286):1–6

    Google Scholar 

  • Alizadeh F, Abdullah SNA, Khodavandi A, Abdullah F, Yusuf UK, Chong PP (2011) Differential expression of oil palm pathology genes during interactions with Ganoderma boninense and Trichoderma harzianum. J Plant Physiol 168:1106–1113

    Article  CAS  PubMed  Google Scholar 

  • Alm EKH (2007) Success stories of agricultural long-term experiments. In: Kungl. Skogs- Och Lantbruksakademiens Tidskrift, 146. ISBN: 978-91-85205-61-5

    Google Scholar 

  • Al-Obaidi J, Mohd-Yusuf Y, Razali N, Jayapalan J, Tey C-C, Md-Noh N, Junit S, Othman R, Hashim O (2014) Identification of proteins of altered abundance in oil palm infected with Ganoderma boninense. Int J Mol Sci 15:5175–5192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azahar TM, Idris AS, Abu Hassan D, Norazlin I (2014) Assessment of basal stem rot disease distribution in palm oil plantation using geographical information system. J Sci Technol 81–92

    Google Scholar 

  • Azzeme AM, Abdullah SNA, Aziz MA, Wahab PEM (2016) Oil palm leaves and roots differ in physiological response, antioxidant enzyme activities and expression of stress-responsive genes upon exposure to drought stress. Acta Physiol Plant 38(52):1–12

    CAS  Google Scholar 

  • Barcelos E, Rios SD, Cunha RN, Lopes R, Motoike SY, Babiychuk E, Skirycz A, Kushnir S (2015) Oil palm natural diversity and the potential for yield improvement. Front Plant Sci 6(190):1–16

    Google Scholar 

  • Bersanelli M, Mosca E, Remondini D, Giampieri E, Sala C, Castellani G, Milanesi L (2016) Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinform 15:167–177

    Google Scholar 

  • Billotte N,Marseillac N,Risterucci AM, Adon B, Brottier P, Baurens FC, Singh R, Herran A, Asmady H, Billot C, Amblard P, Durand-Gasselin T, Courtois B, Asmono D, Cheah SC, Rohde W, Ritter E, Charrier A (2005) Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 110:754–765

    Google Scholar 

  • Bird A (2002) DNA methylation patternsand epigenetic memory. Genes Dev 16(1):6–21

    Article  CAS  PubMed  Google Scholar 

  • Bourgis F, Kilaru A, Cao X, Ngando-Ebongue G, Drira N, Ohlrogge JB (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci 108(30):12527–12532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breton F, Hasan Y, Hariadi S, Lubis Z, De Franqueville H (2006) Characterization of parameters for the development of an early screening test for basal stem rot tolerance in oil palm progenies. J Oil Palm Res (Special Issue):24–36

    Google Scholar 

  • Chasman D, Siahpirani AF, Roy S (2016) Network-based approaches for analysis of complex biological systems. Curr Opin Biotech 39:157–166

    Article  CAS  PubMed  Google Scholar 

  • Cheah SC, Abdullah SNA, Ooi LCL, Rahimah AR, Maria M (1993) Detection of DNA variability in the oil palm using RFLP probes. 1991 PORIM international palm oil conference—agriculture (module 1). Kuala Lumpur, Malaysia, pp 144–150

    Google Scholar 

  • Chen R, Snyder M (2013) Promise of personalized omics to precision medicine. Wiley Interdiscip Rev Syst Biol Med 5(1):73–82

    Article  PubMed  Google Scholar 

  • Chong KL, Kanniah KD, Pohl C, Tan KP (2017) A review of remote sensing applications for oil palm studies. Geo Spatial Inform Sci 20(2):184–200

    Article  Google Scholar 

  • Colmsee C, Mascher M, Czauderna T, Hartmann A, Schlüter U, Zellerhoff N, Schmitz J, Bräutigam A, Pick TR, Alter P, Gahrtz M, Witt S, Fernie AR, Börnke F, Fahnenstich H, Bucher M, Dresselhaus T, Weber APM, Schreiber F, Scholz U, Sonnewald U (2012) OPTIMAS-DW: a comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize. BMC Plant Biol 12(245):1–10

    Google Scholar 

  • Cook CE, Bergman MT, Finn RD, Cochrane G, Birney E, Apweiler R (2016) The European Bioinformatics Institute in 2016: data growth and integration. Nucleic Acids Res 44(Database):D20–D26

    Google Scholar 

  • Corley RHV (2009) How much palm oil do we need? Environ Sci Policy 12:134–139

    Article  CAS  Google Scholar 

  • Daim LDJ, Tek Ooi, Ithnin N, Mohd Yusof H, Kulaveerasingam H, Majid NA, Karsani SA (2015) Comparative proteomic analysis of oil palm leaves infected with Ganoderma boninense revealed changes in proteins involved in photosynthesis, carbohydrate metabolism, immunity and defense. Electrophoresis 36(15):1699–1710

    Article  CAS  Google Scholar 

  • Durand-Gasselin T, Asmady H, Flori A, Jacquemard JC, Hayun Z, And Breton F, De Franqueville H (2005) Possible sources of genetic resistance in oil palm (Elaeis guineensis Jacq.) to basal stem rot caused by G. boninense-prospects for future breeding. Mycopathologia 159:93–100

    Article  CAS  PubMed  Google Scholar 

  • Dussert S, Guerin C, Andersson M, Joët T, Tranbarger TJ, Pizot M, Sarah G, Omore A, Durand-Gasselin T, Morcillo F (2013) Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. Plant Physiol 162:1337–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzulkafli SB, Abrizah O, Benjamin LYC, Syahanim S, Idris AS, Ramli US (2016) Optimization of protein extraction from Ganoderma boninense for SDS PAGE analysis. Trans Persatuan Genetik Malaysia 3:193–197

    Google Scholar 

  • Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  • Fiocchi C (2014) Integrating omics: the future of IBD? Dig Dis 32(Suppl 1):96–102

    Google Scholar 

  • Fondi M, Liò P (2015) Multi-omics and metabolic modelling pipelines: challenges and tools for systems microbiology. Microbiol Res 171:52–64

    Article  CAS  PubMed  Google Scholar 

  • Ganiger M, Walker DR, Chen ZY (2013) Proteomics based study of soybean and Phakopsora pachyrhizi interaction. In: Proceedings of the Twelfth I. E. Melhus Graduate Student Symposium. Annual Meeting of the American Phytopathological Society (APS), 6 August 2012 in Providence, RI. Plant Health Prog, pp 1–13. https://doi.org/10.1094/php-2013-1125-01-rs

  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotech 22(5):245–252

    Article  CAS  Google Scholar 

  • Han Y, Garcia BA (2013) Combining genomic and proteomic approaches for epigenetics research. Epigenomics 5(4):439–452

    Article  CAS  PubMed  Google Scholar 

  • Hasan Y, Turner PD (1998) The comparative importance of different oil palm tissue as infection sources of basal stem rot in replantings. Planter 74(864):119–135

    Google Scholar 

  • Hassan H, Tahir NI, Ramli US (2016) Proteome and metabolome assessment of oil palm fruit development for advanced breeding perspective. Trans Persatuan Genetik Malaysia 3:199–204

    Google Scholar 

  • Hassan H, Mohd Din A, Weckwerth W and Ramli US (2019) Deciphering key proteins of oil palm (Elaeis guineensis Jacq.) fruit mesocarp development by proteomics and chemometrics. Electrophoresis 40(2):254–265

    Google Scholar 

  • Haug K, Salek RM, Conesa P, Hastings J, De Matos P, Rijnbeek M, Mahendraker T, Williams M, Neumann S, Rocca-Serra P, Maguire E, González-Beltrán A, Sansone S, Griffin JL, Steinbeck C (2013) MetaboLights -an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucl Acids Res 41(D1):D781–D786

    Article  CAS  PubMed  Google Scholar 

  • Ho CL, Tan YC, Yeoh KA, Ghazali AK, Yee WY, Hoh CC (2016) De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.). BMC Genom 17(66):1–19

    Google Scholar 

  • Hong J, Yang L, Zhang D, Shi J (2016) Plant metabolomics: an indispensable system biology tool for plant science. Int J Mol Sci 17(767):1–16

    Google Scholar 

  • Idris AS, Kushairi A, Ismail S, Ariffin D (2004) Selection forpartial resistance in oil palm progenies to Ganoderma basal stem rot. J Oil Palm Res 16(1):12–18

    Google Scholar 

  • Idris AS, Nasyarudin MNM, Maizatul SM, Zaiton S (2010) Gano EB1—A bacterial biocontrol agent for Ganoderma in oil palm. MPOB Inf. Ser. MPOB TT No. 443

    Google Scholar 

  • Idris AS, Mior MHAZ, Maizatul SM, Kushairi A (2011) Survey on status of Ganoderma disease of oil palm. In: Proceeding of MPOB International Palm Oil Conference (PIPOC 2011), Malaysian Palm Oil Board, Kuala Lumpur, Malaysia, 15–17 November 2011, pp 235–238

    Google Scholar 

  • Jaligot E, Beulé T, Rival A (2002) Methylation-sensitive RFLPs: characterisation of two oil palm markers showing somaclonal variation-sensitive associated polymorphism. Theor Appl Genet 104:1263–1269

    Article  CAS  PubMed  Google Scholar 

  • Jones P, Côté RG, Martens L, Quinn AF, Taylor CF, Derache W, Hermjakob H, Apweiler R (2006) PRIDE: a public repository of protein and peptide identifications for the proteomics community. Nucleic Acids Res. 34(Database issue):D659–D663

    Google Scholar 

  • Keurentjes JJ (2009) Genetical metabolomics: closing in on phenotypes. Curr Opin Plant Biol 2:223–230

    Article  CAS  Google Scholar 

  • Krumsiek J, Bartel J, Theis FJ (2016) Computational approaches for systems metabolomics. Curr Opin Biotechnol 39:198–206

    Article  CAS  PubMed  Google Scholar 

  • Lau BYC, Clerens S, Morton JD, Dyer JM, Deb-Choudhury S, Ramli US (2015) Method developments to extract proteins from oil palm chromoplast for proteomic analysis. Springer Plus 4:791

    Article  PubMed  PubMed Central  Google Scholar 

  • Lau BYC, Clerens S, Morton JD, Dyer JM, Deb-Choudhury S, Ramli US (2016) Application of mass spectrometry approach to detect the presence of fatty acid biosynthetic phosphopeptides. Protein J 35:163–170

    Article  CAS  PubMed  Google Scholar 

  • Lau BYC, Morton JD, Deb-Choudhury S, Clerens S, Dyer JM, Ramli US (2017) Differential expression analysis of oil palm fatty acid biosynthetic enzymes with gel-free quantitative proteomics. J Oil Palm Res 29(1):23–34

    Article  Google Scholar 

  • Lea PJ, Sodek L, Parry MAJ, Shewry R, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150:1–26

    Article  CAS  Google Scholar 

  • Lim T, Chung G, Ko W (1992) Basal stem rot of oil palm caused by Ganoderma boninense. Plant Pathol Bull 1(3):147–152

    Google Scholar 

  • Loei H, Lim J, Tan M, Lim TK, Lin QS, Chew FT, Kulaveerasingam H, Cung MC (2013) Proteomic analysis of the oil palm fruit mesocarp reveals elevated oxidative phosphorylation activity is critical for increased storage oil Production. J Proteome Res 12:5096–5109

    Article  CAS  PubMed  Google Scholar 

  • Maier T, Güell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583:3966–3973

    Article  CAS  PubMed  Google Scholar 

  • Malaysian Palm Oil Board (MPOB) (2011) Palm oil: the way forward. Entry

    Google Scholar 

  • Malaysian Standard MS 2099 (2008) Oil palm clones for commercial planting—specification for ortet selection. Department of Standards Malaysia

    Google Scholar 

  • Mann M, Kelleher NL (2008) Precision proteomics: the case for high resolution and high mass accuracy. PNAS 105(47):18131–18138

    Article  Google Scholar 

  • Martens L, Hermjakob H, Jones P, Adamski M, Taylor C, States D, Gevaert K, Vandekerckhove J, Apweiler R (2005) PRIDE: the proteomics identifications database. Proteomics 5:3537–3545

    Article  CAS  PubMed  Google Scholar 

  • Mayes S, James C, Horner SF, Jack PL, Corley RHV (1996) The application of restriction fragment length polymorphism for the genetic fingerprinting of oil palm (Elaeis guineensis). Mol Breed 2:175–180

    Article  CAS  Google Scholar 

  • Mayes S, Jack PL, Marshall D, Corley RHV (1997) Construction of a RFLP genetic linkage map for oil palm (Elaeis guineensis Jacq.). Genome 40:116–122

    Article  CAS  PubMed  Google Scholar 

  • Mayes S, Jack PL, Corley RHV (2000) The use of molecular markers to investigate the genetic structure of an oil palm breeding programme. Heredity 85:288–293

    Article  CAS  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Mohamad Arif AM, Abrizah O, Zetty Norhana BY, Syahanim S, Idris AS, Mohd Din A, Sambanthamurthi R (2007) Molecular and biochemical approaches to understanding oil palm-Ganoderma interactions. In: Proceeding of MPOB International Palm Oil Conference (PIPOC 2007), Kuala Lumpur Convention Centre, Kuala Lumpur, Malaysia, pp 228–246

    Google Scholar 

  • Murphy DJ (2014) The future of oil palm as a major global crop: opportunities and challenges. J Oil Palm Res 26(1):1–24

    Google Scholar 

  • Navaratnam SJ, Chee KL (1965) Root inoculation of oil palm seedlings with Ganoderma sp. Plant Dis 489:1011–1012

    Google Scholar 

  • Neoh BK, Teh HF, Ng TLM, Tiong SH, Thang YM, Ersad MA, Mohamed M, Chew FT, Kulaveerasingam H, Appleton DR (2013) Profiling of metabolites in oil palm mesocarp at different stages of oil biosynthesis. J Agric Food Chem 61:1920–1927

    Article  CAS  PubMed  Google Scholar 

  • Nur-Ain I, Nurazah Z, Rozali NL, Halim MA, Rosli R, Abrizah O, Ramli US, Tahir NI (2015) Construction of integrated oil palm metabolome chemical resources library. In: Proceeding of MPOB International Palm Oil Conference (PIPOC 2015), Kuala Lumpur Convention Centre, Kuala Lumpur, Malaysia, 6–8 October 2015, pp 381–385

    Google Scholar 

  • Nurazah Z, Idris AS, Kushairi A, Ramli US (2013) Metabolite profiling of oil palm towards understanding basal stem rot (BSR) disease. J Oil Palm Res 25(1):58–71

    Google Scholar 

  • Nurazah Z, Idris AS, Kushairi A, Amiruddin MD, Abrizah O, Ramli US (2017) Metabolomics unravel differences between Cameroon dura and Deli dura oil palm (Elaeis guineensis Jacq.) genetic backgrounds against basal stem rot. J Oil Palm Res 29(2):227–241

    Google Scholar 

  • OECD/FAO (2017) OECD-FAO Agricultural Outlook 2017–2026. OECD Publishing, Paris. http://dx.doi.org/10.1787/agr_outlook-2017-en

  • Oil World Annual (2017) Palm oil: world production (1000T), Yields (T/ha) and Mature Area (1000 ha). Oil World, ISTA Mielke GmbH, Hamburg, Germany

    Google Scholar 

  • Ong-Abdullah M, Ordway JM, Jiang N, Ooi SE, Sarpan N, Azimi N, Hashim AT, Ishak Z, Rosli SK, Malike FA, Bakar NA, Marjuni M, Abdullah N, Yaakub Z, Amiruddin MD, Nookiah R, Singh R, Low ET, Chan KL, Azizi N, Smith SW, Bacher B, Budiman MA, Van Brunt A, Wischmeyer C, Beil M, Hogan M, Lakey N, Lim CC, Arulandoo X, Wong CK, Choo CN, Wong WC, Kwan YY, Alwee SS, Sambanthamurthi R, Martienssen RA (2015) Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525(7570):533–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oo KC, Teh SK, Khor HT, Ong ASH (1985) Fatty acid synthesis in the oil palm (Elaeis guineensis): incorporation of acetate by tissue slices of the developing fruit. Lipids 20(4):205–210

    Article  CAS  Google Scholar 

  • Ooi THE, Yeap WC, Daim LDJ, Ng BZ, Lee FC, Othman AM, Appleton DR, Chew FT, Kulaveerasingam H (2015) Differential abundance analysis of mesocarp protein from high- and low-yielding oil palms associates non-oil biosynthetic enzymes to lipid biosynthesis. Proteome Sci 13:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parveez GKA, Rasid OA, Masani MYA, Sambanthamurthi R (2015) Biotechnology of oil palm: strategies towards manipulation of lipid content and composition. Plant Cell Rep 34(4):533–543

    Article  CAS  PubMed  Google Scholar 

  • Rajanaidu N, Kushairi A, Rafii M, Din M, Maizura I, Jalani B (2000) Oil palm breeding and genetic resources. In: Basiron YB, Jalani B, Chan KW (eds) Advances in oil palm research. Malaysian Palm Oil Board, Kuala Lumpur, pp 171–227

    Google Scholar 

  • Ramli US, Baker DS, Quant PA, Harwood JL (2002a) Control mechanisms operating for lipid biosynthesis differ in oil-palm (Elaeis guineensis Jacq.) and olive (Olea europaea L.) callus cultures. Biochem J 364(1):385–391

    Google Scholar 

  • Ramli US, Baker DS, Quant PA, Harwood JL (2002b) Use of control analysis to study the regulation of plant lipid biosynthesis. Biochem Soc Trans 30:1043–1046

    Article  CAS  PubMed  Google Scholar 

  • Ramli US, Salas JJ, Quant PA, Harwood JL (2009) Use of metabolic control analysis to give quantitative information on control of lipid biosynthesis in the important oil crop, Elaeis guineensis (oil palm). New Phytol 184(2):330–339

    Article  CAS  PubMed  Google Scholar 

  • Ramli US, Lau BYC, Tahir NI, Shahwan S, Hassan H, Nurazah Z, Rozali NL, Dzulkafli S, Nur-Ain I, Abrizah O (2016) Proteomics and metabolomics: spearheading oil palm improvement and sustainability. Planter 92(1087):727–737

    Google Scholar 

  • Rampitsch C, Bykova NV, Mccallum B, Beimcik E, Ens W (2006) Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a compatible host-pathogen interaction. Proteomics 6:1897–1907

    Article  CAS  PubMed  Google Scholar 

  • Rees RW, Flood J, Hasan Y, Potter U, Cooper RM (2009) Basal stem rot of oil palm (Elaeis guineensis); mode of root infection and lower stem invasion by Ganoderma boninense. Plant Pathol 58(5):982–989

    Google Scholar 

  • Römpp A, Wang R, Albar JP, Urbani A, Hermjakob H, Spengler B, Vizcaíno JA (2015) A public repository for mass spectrometry imaging data. Anal Bioanal Chem 407:2027–2033

    Article  PubMed  CAS  Google Scholar 

  • Rozali NL, Yarmo MA, Idris AS, Kushairi A, Ramli US (2017) Metabolomics differentiation of oil palm (Elaeis guineensis Jacq.) spear leaf with contrasting susceptibility to Ganoderma boninense. Plant Omics 10:45–52

    Article  CAS  Google Scholar 

  • Sambanthamurthi R, Abrizah O, Ramli US (1999) Biochemical factors that control oil composition in the oil palm. J Oil Palm Res (Special Issue) 24–33

    Google Scholar 

  • SambanthamurthI R, Sundram K, Tan YA (2000) Chemistry and biochemistry of palm oil. Prog Lipid Res 39:507–558

    Google Scholar 

  • Sariah M, Hussin MZ, Miller RNG, Holderness M (1994) Pathogenicity of Ganoderma boninense tested by inoculation of oil palm seedlings. Plant Pathol 43(3):507–510

    Article  Google Scholar 

  • Sass S, Buettner F, Mueller NS, Theis FJ (2013) A modular framework for gene set analysis integrating multilevel omics data. Nucleic Acids Res 41(21):9622–9633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawada Y, Hirai MY (2013) Integrated LC-MS/MS system for plant metabolomics. Comput Struct Biotech J 4(5):1–6

    Article  Google Scholar 

  • Shenton MR, Berberich T, Kamo M, Yamashita T, Taira H, Terauchi R (2012) Use of intercellular washing fluid to investigate the secreted proteome of the rice—Magnaporthe interaction. J Plant Res 125:311–316

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Cheah SC (1999) Analysis of the inheritance of AFLP markers in an interspecific cross of oil palm using the pseudo-testcross strategy. J Oil Palm Res (Special Issue):64–73

    Google Scholar 

  • Singh R, Zaki NM, Ting NC, Tan SG, Low ETL, Ithnin M, Cheah SC (2008) Exploiting an oil palm EST database for the development of gene-derived SSR markers and their exploitation for assessment of genetic diversity. Biologia 63(2):227–235

    Article  CAS  Google Scholar 

  • Singh R, Ong-Abdullah M, Low ETL, Manaf MAA, Rosli R, Nookiah R, Ooi LCL, Ooi SE, Chan KL, Halim MA, Azizi N, Jayanthi N, Bacher B, Lakey N, Smith SW, He D, Hogan M, Budiman MA, Lee EK, Desalle R, Kudrna D, Goicoechea JL, Wing RA Wilson RK, Fulton RS, Ordway JM, Martienssen RA, Sambanthamurthi R (2013a) Oil palm genome sequences reveals divergence of interfertile species in old and new worlds. Nature 500(7462):335–339

    Google Scholar 

  • Singh R, Low ETL, Ooi LCL, Ong-Abdullah M, Ting NC, Jayanthi N, Nookiah R, Amiruddin Md, Rosli R, Manaf MAA, Chan KL, Halim MA, Azizi N, Lakey N, Smith SW, Budiman MA, Hogan M, Bacher B, Brunt AV, Wang C, Ordway JM, Sambanthamurthi R, Martienssen RA (2013b) The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature 500(7462):340–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soh AC, Mayes S, Roberts JA (2017) Oil palm breeding. Genetics and genomics. CRC Press, USA

    Book  Google Scholar 

  • Sundram K, Sambanthamurthi R, Tan YA (2003) Palm fruit chemistry and nutrition. Asia Pacific J Clin Nutr 12(3):355–362

    CAS  Google Scholar 

  • Sung J, Wang Y, Chandrasekaran S, Witten DM, Price ND (2012) Molecular signatures from omics data: from chaos to consensus. Biotech J 7:946–957

    Article  CAS  Google Scholar 

  • Susanto A, Sudharto PS, Purba RY (2005) Enhancing biological control of basal stem rot disease (Ganoderma boninense) in oil palm plantations. Mycopathologia 59(1):153–7

    Google Scholar 

  • Syahanim S, Abrizah O, Manaf MAA, Idris AA, Amiruddin MD (2013) Identification of differentially expressed proteins in oil palm seedlings artificially infected with Ganoderma: a proteomics approach. J Oil Palm Res 25(3):298–304

    CAS  Google Scholar 

  • Tahir NI, Shaari K, Abas F, Parveez GKA, Zamzuri I, Ramli US (2012) Characterization of apigenin and luteolin derivatives from oil palm (Elaeis guineensis Jacq.) leaf using LC-ESI-MS/MS. J Agric Food Chem 60(45):11201–11210

    Google Scholar 

  • Tahir NI, Shaari K, Abas F, Zamzuri I, Tarmizi AH, Amiruddin MD, Parveez GKA, Ramli US (2016) Metabolome analysis of oil palm clone P325 of different planting trials. J Oil Palm Res 28(4):431–441

    Article  CAS  Google Scholar 

  • Tan HS, Jacoby RP, Ong-Abdullah M, Taylor NL, Liddell S, Wong WC, Chiew FC (2017) Proteomic profiling of mature leaves from oil palm (Elaeis guineensis Jacq.). Electrophoresis 38:1147–1153

    Article  CAS  PubMed  Google Scholar 

  • Tee SS, Tan YC, Abdullah F, Ong-Abdullah M, Ho CL (2013) Transcriptome of oil palm (Elaeis guineensis Jacq.) roots treated with Ganoderma boninense. Tree Genet Genomes 9:377–386

    Article  Google Scholar 

  • Teh HF, Neoh BK, Hong MPL, Low JYS, Ng TLM, Ithnin N, Thang YM, Mohamed M, Chew FT, Yusof HM (2013) Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp. PLoS ONE 8:e61344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teh HF, Neoh BK, Wong YC, Kwong QB, Ooi TEK, Ng TLM, Tiong SH, Low JYS, Danial AD, Ersad MA, Kulaveerasingam H, Appleton DR (2014) Hormones, polyamines, and cell wall metabolism during oil palm fruit mesocarp development and ripening. J Agric Food Chem 62(32):8143–8152

    Article  CAS  PubMed  Google Scholar 

  • Ting NC, Jansen J, Mayes S, Massawe F, Sambanthamurthi R, Ooi LCL, Chin CW, Arulandoo X, Seng TY, Alwee SS, Ithnin M, Singh R (2014) High density SNP and SSR-based genetic maps of two independent oil palm hybrids. BMC Genomics 15(309):1–11

    Google Scholar 

  • Tohge T, Fernie AR (2015) Metabolomics-Inspired Insight into Developmental, Environmental and Genetic Aspects of Tomato Fruit Chemical Composition and Quality. Plant Cell Physiol 56(9):1681–1696

    Article  CAS  PubMed  Google Scholar 

  • Tranbarger TJ, Dusser S, Joet T, Argout X, Summo M, Champion A, Cros D, Omore A, Nouy B, Morcillo F (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. Plant Physiol 156(2):564–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner PD, Gillbanks RA (2003) Field diseases and disorders of oil palm. In: Oil palm cultivation and management, vol 10. The Incorporated Society of Planters, pp 625–727

    Google Scholar 

  • Vranova E, Hirsch-Hoffmann M, Gruissem W (2011) AtIPD: a curated database of Arabidopsis isoprenoid pathway models and genes for isoprenoid network analysis. Plant Physiol 156:1655–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weckwerth W (2011) Green systems biology—rom single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteomics 75:284–305

    Article  CAS  PubMed  Google Scholar 

  • Wienkoop S, Morgenthal K, Wolschin F, Scholz M, Selbig J, Weckwerth W (2008) Integration of metabolomic and proteomicphenotypes. Mol Cell Proteomics 7(9):1725–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woittiez LS, Van Wij MT, Slingerland M, Van Noordwijk M, Giller KE (2017) Yield gaps in oil palm: a quantitative review of contributing factors. Eur J Agron 83:57–77

    Article  Google Scholar 

  • Wong YC, Teh HF, Mebus K, Ooi TEK, Kwong QB, Koo KL, Ong CK, Mayes S, Chew FT, Appleton DR, Kulaveerasingam H (2017) Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm. BMC Genomics 18:1–13

    Google Scholar 

  • Point Projects (EPP) 2: Increase the national FFB yield. National Key Economic Areas (NKEA). Ministry of Plantation Industries and Commodities, pp 9–10

    Google Scholar 

  • Zhou W, Chen T, Chong Z, Rohrdanz MA, Melott JM, Wakefield C, Zeng J, Weinstein JN, Meric-Bernstam F, Mills GB, Chen K (2015) TransVar: a multilevel variant annotator for precision genomics. Nat Methods 12(11):1002–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Director-General of MPOB for permission to publish this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umi Salamah Ramli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramli, U.S. et al. (2020). Omics—A Potential Tool for Oil Palm Improvement and Productivity. In: Ithnin, M., Kushairi, A. (eds) The Oil Palm Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-22549-0_10

Download citation

Publish with us

Policies and ethics