Skip to main content

New Three-Chemical Polynomial Reaction-Diffusion Equations

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11542))

Included in the following conference series:

  • 2264 Accesses

Abstract

Reaction-diffusion (RD) generates time-varying patterns or noises, used to create beautiful patterned or noisy variations in colors, bumps, flow details, or other parameters. RD can be relatively easily solved on various domains: image, curved surface, and volumetric domains, making their applications popular. Being widely available, most of the patterns from known RD have been well explored. In this paper, we move on this field, by providing a large number of new reaction equations. Among the vast space of new equations, we focus on three-chemical polynomial reactions as the three chemicals can be easily mapped to any colors. We propose a set of new equations that generate new time-varying patterns.

“This research was supported by the MSIP (Ministry of Science, ICT & Future Planning), Korea, under the National Program for Excellence in SW (2015-0-00938) supervised by the IITP (Institute for Information & communications Technology Planning&Evaluation)”.

“This work was supported by the faculty research fund of Sejong University in 2019”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the results of Gierer-Meinhardt, refer https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=examples:reaction-diffusion.

  2. 2.

    For the results of Belousov-Zhabotinsky, refer https://en.wikipedia.org/wiki/Belousov-Zhabotinsky_reaction, https://scipython.com/blog/simulating-the-belousov-zhabotinsky-reaction/.

  3. 3.

    These PDE’s correspond to the additive color mixing. Of course, arbitrary color states and the subtractive color mixing can be applicable.

References

  1. Acton, S.T., Mukherjee, D.P., Havlicek, J.P., Bovik, A.C.: Oriented texture completion by AM-FM reaction-diffusion. IEEE Trans. Image Process. 10(6), 885–896 (2001)

    Article  Google Scholar 

  2. Barkley, D.: A model for fast computer simulation of waves in excitable media. Physica D: Nonlinear Phenom. 49(1–2), 61–70 (1991)

    Article  Google Scholar 

  3. Belousov, B.P.: Radiates. Med. 145 (1959)

    Google Scholar 

  4. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2017)

    Article  Google Scholar 

  5. Cottet, G.H., Germain, L.: Image processing through reaction combined with nonlinear diffusion. Math. Comput. 61, 659–673 (1993)

    Article  MathSciNet  Google Scholar 

  6. FitzHugh, R.: Mathematical Models of Excitation and Propagation in Nerve. Publisher Unknown (1966)

    Google Scholar 

  7. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Biol. Cyberne. 12(1), 30–39 (1972)

    MATH  Google Scholar 

  8. Tim, H., Munafo, R., Trevorrow, A., Rokicki, T., Wills, D.: Ready, a cross-platform implementation of various reaction-diffusion systems (2012). https://github.com/GollyGang/ready

  9. Kindlmann, G., Weinstein, D., Hart, D.: Strategies for direct volume rendering of diffusion tensor fields. IEEE Trans. Visual. Comput. Graph. 6(2), 124–138 (2000)

    Article  Google Scholar 

  10. Kondo, S., Miura, T.: Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(5999), 1616–1620 (2010)

    Article  MathSciNet  Google Scholar 

  11. Lo, K.Y., Li, H., Fu, C.W., Wong, T.T.: Interactive reaction-diffusion on surface tiles. In: 15th Pacific Conference on Computer Graphics and Applications, PG 2007, pp. 65–74. IEEE (2007)

    Google Scholar 

  12. Malevanets, A., Kapral, R.: Microscopic model for Fitzhugh-Nagumo dynamics. Phys. Rev. E 55(5), 5657 (1997)

    Article  Google Scholar 

  13. Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, Cambridge (1982)

    Google Scholar 

  14. Murray, J.: Mathematical Biology II: Spatial Models and Biochemical Applications, vol. II. Springer, New York (2003). https://doi.org/10.1007/b98869

    Book  Google Scholar 

  15. Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability. Chem. Eng. Sci. 38(1), 29–43 (1983)

    Article  Google Scholar 

  16. Pena, B., Perez-Garcia, C.: Stability of Turing patterns in the Brusselator model. Phys. Rev.E 64(5), 056213 (2001)

    Article  MathSciNet  Google Scholar 

  17. Sanderson, A.R., Johnson, C.R., Kirby, R.M.: Display of vector fields using a reaction-diffusion model. In: Proceedings of the Conference on Visualization 2004, pp. 115–122. IEEE Computer Society (2004)

    Google Scholar 

  18. Sims, K.: Interactive evolution of dynamical systems. In: Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pp. 171–178 (1992)

    Google Scholar 

  19. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 237(641), 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  20. Turk, G.: Generating textures on arbitrary surfaces using reaction-diffusion. ACM SIGGRAPH Comput. Graph. 25, 289–298 (1991)

    Article  Google Scholar 

  21. Walter, M., Fournier, A., Reimers, M.: Clonal mosaic model for the synthesis of mammalian coat patterns. Graph. Interface 98, 82–91 (1998)

    Google Scholar 

  22. Witkin, A., Kass, M.: Reaction-diffusion textures. ACM SIGGRAPH Comput. Graph. 25(4), 299–308 (1991)

    Article  Google Scholar 

  23. Yang, L., Epstein, I.R.: Oscillatory turing patterns in reaction-diffusion systems with two coupled layers. Phys. Rev. Lett. 90(17), 178303 (2003)

    Article  Google Scholar 

  24. Zhabotinsky, A.M.: Dokl. Akad. Nauk SSSR 157. 392 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oh-young Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, Dy., Kim, B., Song, Oy. (2019). New Three-Chemical Polynomial Reaction-Diffusion Equations. In: Gavrilova, M., Chang, J., Thalmann, N., Hitzer, E., Ishikawa, H. (eds) Advances in Computer Graphics. CGI 2019. Lecture Notes in Computer Science(), vol 11542. Springer, Cham. https://doi.org/10.1007/978-3-030-22514-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22514-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22513-1

  • Online ISBN: 978-3-030-22514-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics