Skip to main content

Integrating Peridynamics with Material Point Method for Elastoplastic Material Modeling

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11542))

Included in the following conference series:

Abstract

We present a novel integral-based Material Point Method (MPM) using state based peridynamics structure for modeling elastoplastic material and fracture animation. Previous partial derivative based MPM studies face challenges of underlying instability issues of particle distribution and the complexity of modeling discontinuities. To alleviate these problems, we integrate the strain metric in the basic elastic constitutive model by using material point truss structure, which outweighs differential-based methods in both accuracy and stability. To model plasticity, we incorporate our constitutive model with deviatoric flow theory and a simple yield function. It is straightforward to handle the problem of cracking in our hybrid framework. Our method adopts two time integration ways to update crack interface and fracture inner parts, which overcome the unnecessary grid duplication. Our work can create a wide range of material phenomenon including elasticity, plasticity, and fracture. Our framework provides an attractive method for producing elastoplastic materials and fracture with visual realism and high stability.

This work is supported by National Natural Science Foundation of China (61702433, 61661146002), the Fundamental Research Funds for the Central Universities, the China Scholarship Council and Bournemouth University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Böttcher, G.: Haptic Interaction with Deformable Objects: Modelling VR Systems for Textiles. Springer, London (2011). https://doi.org/10.1007/978-0-85729-935-2

    Book  Google Scholar 

  2. Bottcher, G., Allerkamp, D., Wolter, F.E.: Virtual reality systems modelling haptic two-finger contact with deformable physical surfaces. In: 2007 International Conference on Cyberworlds (CW 2007), pp. 292–299. IEEE (2007)

    Google Scholar 

  3. Chen, W., Zhu, F., Zhao, J., Li, S., Wang, G.: Peridynamics-based fracture animation for elastoplastic solids. In: Computer Graphics Forum, vol. 37, pp. 112–124. Wiley Online Library (2018)

    Google Scholar 

  4. Gao, M., Tampubolon, A.P., Jiang, C., Sifakis, E.: An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Trans. Graph. (TOG) 36(6), 223 (2017)

    Google Scholar 

  5. Gerszewski, D., Bhattacharya, H., Bargteil, A.W.: A point-based method for animating elastoplastic solids. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 133–138. ACM (2009)

    Google Scholar 

  6. He, X., Wang, H., Wu, E.: Projective peridynamics for modeling versatile elastoplastic materials. IEEE Trans. Vis. Comput. Graph. 24(9), 2589–2599 (2018)

    Article  Google Scholar 

  7. Homel, M.A., Herbold, E.B.: Field-gradient partitioning for fracture and frictional contact in the material point method. Int. J. Num. Methods Eng. 109(7), 1013–1044 (2017)

    Article  MathSciNet  Google Scholar 

  8. Jiang, C., Gast, T., Teran, J.: Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans. Graph. (TOG) 36(4), 152 (2017)

    Google Scholar 

  9. Jiang, C., Schroeder, C., Selle, A., Teran, J., Stomakhin, A.: The affine particle-in-cell method. ACM Trans. Graph. (TOG) 34(4), 51 (2015)

    MATH  Google Scholar 

  10. Jiang, C., Schroeder, C., Teran, J., Stomakhin, A., Selle, A.: The material point method for simulating continuum materials. In: ACM SIGGRAPH 2016 Courses, p. 24. ACM (2016)

    Google Scholar 

  11. Levin, D.I., Litven, J., Jones, G.L., Sueda, S., Pai, D.K.: Eulerian solid simulation with contact. ACM Trans. Graph. (TOG) 30(4), 36 (2011)

    Article  Google Scholar 

  12. Levine, J.A., Bargteil, A.W., Corsi, C., Tessendorf, J., Geist, R.: A peridynamic perspective on spring-mass fracture. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 47–55. Eurographics Association (2014)

    Google Scholar 

  13. Liang, Y., Benedek, T., Zhang, X., Liu, Y.: Material point method with enriched shape function for crack problems. Comput. Methods Appl. Mech. Eng. 322, 541–562 (2017)

    Article  MathSciNet  Google Scholar 

  14. O’brien, J.F., Bargteil, A.W., Hodgins, J.K.: Graphical modeling and animation of ductile fracture. ACM Trans. Graph. (TOG) 21, 291–294 (2002)

    Google Scholar 

  15. Salsedo, F., et al.: Architectural design of the HAPTEX system. In: submitted to the Proceedings of this Conference (2005)

    Google Scholar 

  16. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  MathSciNet  Google Scholar 

  17. Silling, S.A., Askari, A.: Peridynamic model for fatigue cracking. SAND2014-18590. Sandia National Laboratories, Albuquerque (2014)

    Google Scholar 

  18. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)

    Article  MathSciNet  Google Scholar 

  19. Silling, S.A., Askari, A.: Practical peridynamics. Technical report, Sandia National Lab. (SNL-NM), Albuquerque, NM, United States (2014)

    Google Scholar 

  20. Stomakhin, A., Howes, R., Schroeder, C., Teran, J.M.: Energetically consistent invertible elasticity. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 25–32. Eurographics Association (2012)

    Google Scholar 

  21. Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A.: A material point method for snow simulation. ACM Trans. Graph. (TOG) 32(4), 102 (2013)

    Article  Google Scholar 

  22. Stomakhin, A., Teran, J., Selle, A.: Augmented material point method for simulating phase changes and varied materials, 2 Jul 2015. US Patent App. 14/323,798

    Google Scholar 

  23. Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1–2), 179–196 (1994)

    Article  MathSciNet  Google Scholar 

  24. Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87(1–2), 236–252 (1995)

    Article  Google Scholar 

  25. Tampubolon, A.P., Gast, T., Klár, G., Fu, C., Teran, J., Jiang, C., Museth, K.: Multi-species simulation of porous sand and water mixtures. ACM Trans. Graph. (TOG) 36(4), 105 (2017)

    Article  Google Scholar 

  26. Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In: ACM SIGGRAPH Computer Graphics, vol. 22, pp. 269–278. ACM (1988)

    Google Scholar 

  27. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. ACM SIGGRAPH Comput. Graph. 21(4), 205–214 (1987)

    Article  Google Scholar 

  28. Xu, L., He, X., Chen, W., Li, S., Wang, G.: Reformulating hyperelastic materials with peridynamic modeling. In: Computer Graphics Forum, vol. 37, pp. 121–130. Wiley Online Library (2018)

    Google Scholar 

  29. Zhu, B., Lee, M., Quigley, E., Fedkiw, R.: Codimensional non-Newtonian fluids. ACM Trans. Graph. (TOG) 34(4), 115 (2015)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Lyu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lyu, Y., Zhang, J., Chang, J., Guo, S., Zhang, J.J. (2019). Integrating Peridynamics with Material Point Method for Elastoplastic Material Modeling. In: Gavrilova, M., Chang, J., Thalmann, N., Hitzer, E., Ishikawa, H. (eds) Advances in Computer Graphics. CGI 2019. Lecture Notes in Computer Science(), vol 11542. Springer, Cham. https://doi.org/10.1007/978-3-030-22514-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22514-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22513-1

  • Online ISBN: 978-3-030-22514-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics