Skip to main content

Spatial and Temporal Analysis of Precipitation and Drought Trends Using the Climate Forecast System Reanalysis (CFSR)

  • Chapter
  • First Online:
Stewardship of Future Drylands and Climate Change in the Global South

Part of the book series: Springer Climate ((SPCL))

Abstract

Determination of spatial and temporal patterns of precipitation and drought remains a challenge in many arid and semi-arid regions. Generally, in these areas, precipitation measurements obtained from field stations are few or unreliable. Reanalysis precipitation data has opened up new large-scale hydrological application in data-sparse or ungauged catchments. This study presents a method based on GIS, statistical tests, and satellite-based precipitation for the analysis of spatial and temporal precipitation and drought trends. As a case study, we used 35 years (1979–2013) of precipitation data from the climate forecast system reanalysis (CFSR) for the Mexican state of Durango. For trend detection, we used the statistical test of Mann–Kendall at 5% standard precipitation index timescale of 12 months (SPI-12) to analyze the spatiotemporal trends of drought, and principal component analysis (PCA) was applied to characterize the spatial patterns. In many of the grid locations analyzed, the precipitation trends were not statistically significant. However, the months within winter and spring, except for June, showed a decreasing trend in precipitation, while the months of July, August, and September showed an increasing trend. This variation in rainfall intensity agrees with the climate pattern reported for this region. The frequency of drought events for each month during the period of analysis was mapped. The incidence of drought events was higher in June and September. Drought events are present all around the state of Durango, but they are more frequent in the northern part, in the Sierra Madre Occidental, Mapimi, and Laguna regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashouri H, Nguyen P, Thorstensen A, Hsu K-L, Sorooshian S, Braithwaite D (2016) Assessing the efficacy of high-resolution satellite-based PERSIANN-CDR precipitation product in simulating streamflow. J Hydrometeorol 17(7):2061–2076

    Article  Google Scholar 

  • Ayanlade A, Radeny M, Morton JF, Muchaba T (2018) Rainfall variability and drought characteristics in two agro-climatic zones: an assessment of climate change challenges in Africa. Sci Total Environ 630:728–737

    Article  CAS  Google Scholar 

  • Beguería S, Vicente-Serrano SM, Beguería MS (2017) Package SPEI, Calculation of the Standardised Precipitation-vapotranspiration, version 1.7. http://sac.csic.es/spei

  • Chen Y, Han D (2016) Big data and hydroinformatics. J Hydroinf 18(4):599–614

    Article  Google Scholar 

  • Comrie AC, Glenn EC (1998) Principal components-based regionalization of precipitation regimes across the southwest United States and northern Mexico, with an application to monsoon precipitation variability. Clim Res 10(3):201–215

    Article  Google Scholar 

  • Comtois P (2000) The gamma distribution as the true aerobiological probability density function. Aerobiologia 16(2):171–176

    Article  Google Scholar 

  • Dinpashoh Y, Mirabbasi R, Jhajharia D, Abianeh HZ, Mostafaeipour AJ (2013) Effect of short-term and long-term persistence on identification of temporal trends. J Hydrol Eng 19(3):617–625

    Article  Google Scholar 

  • Ffolliott PF (2012) Sustainable use of natural resources of dryland regions in controlling of environmental degradation and desertification. In: Sustainable natural resources management. InTech, London

    Google Scholar 

  • Fuka DR, Walter MT, MacAlister C, Degaetano AT, Steenhuis TS, Easton ZM (2014) Using the climate forecast system reanalysis as weather input data for watershed models. Hydrol Process 28(22):5613–5623

    Article  Google Scholar 

  • Gallego M, Trigo R, Vaquero J, Brunet M, García J, Sigró J, Valente MJ (2011) Trends in frequency indices of daily precipitation over the Iberian Peninsula during the last century. J Geophys Res Atmos 116(D2):7280

    Article  Google Scholar 

  • Gao Y, Liu MJH, Discussions ESS (2012) Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol Earth Syst Sci 9(8):23

    Article  Google Scholar 

  • Ghosh S, Mujumdar P (2007) Nonparametric methods for modeling GCM and scenario uncertainty in drought assessment. Water Resour Res 43(7):W07405

    Article  Google Scholar 

  • Greenwood JA, Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form. Water Resour Res 15(5):1049–1054

    Article  Google Scholar 

  • Hamed KH, Rao ARJ (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204(1–4):182–196

    Article  Google Scholar 

  • Hare FJ (1983) Climate and desertification. A revised analysis. World Meteorological Organization, WCP-44. World Climate Program, Geneva

    Google Scholar 

  • Higgins RW, Chen Y, Douglas AV (1999) Interannual variability of the North American warm season precipitation regime. J Clim 12(3):653–680

    Article  Google Scholar 

  • Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci 374(2065):20150202

    Article  Google Scholar 

  • Khaliq MN, Ouarda TB, Gachon P, Sushama L, St-Hilaire A (2009) Identification of hydrological trends in the presence of serial and cross correlations: a review of selected methods and their application to annual flow regimes of Canadian rivers. J Hydrol 368(1–4):117–130

    Article  Google Scholar 

  • Kiros G, Shetty A, Nandagiri L (2017) Extreme rainfall signatures under changing climate in semi-arid northern highlands of Ethiopia. Cogent Geosci 3(1):1353719

    Article  Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, Van den Dool H, Jenne R, Fiorino M (2001) The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82(2):247–268

    Article  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93(1):5–48

    Article  Google Scholar 

  • Magaña VO, Vázquez JL, Pérez JL, JBJGi P (2003) Impact of El Niño on precipitation in Mexico. Geofis Int 42(3):313–330

    Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Preprints, eighth conference on applied climatology. American Meteorological Society, Anaheim, pp 179–184

    Google Scholar 

  • Mosiño Alemán PA, Garcia E (1981) The variability of rainfall in Mexico and its determination by means of the gamma distribution. Geogr Ann Ser B 63(1–2):1–10

    Google Scholar 

  • Návar J (2014) Spatial and temporal hydro-climatic variability in Durango, Mexico. Tecnol Cienc Agua 1:103–123

    Google Scholar 

  • O’Donnell R, Lewis N, McIntyre S, Condon JJJC (2011) Improved methods for PCA-based reconstructions: case study using the Steig et al. (2009) Antarctic temperature reconstruction. J Clim 24(8):2099–2115

    Article  Google Scholar 

  • Pandey N (2005) Societal adaptation to abrupt climate change and monsoon variability: implications for sustainable livelihoods of rural communities. Winrock International–India, New Delhi

    Google Scholar 

  • Patel NR, Chopra P, Dadhwal VK (2007) Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteorol Appl 14(4):329–336. https://doi.org/10.1002/met.33

    Article  Google Scholar 

  • Pedroza Sandoval A, Sánchez Cohen I, Becerra López J, Ramos Cortez E, Reyes Bernabé C, Rosales Palacios L, Vargas Piedra G (2014) Regionalización de zonas con escaso régimen pluvial: Estudio de caso zona Centro-Norte del estado de Durango, México. Rev Chapingo Ser Zonas Aridas 13(2):71–85

    Article  Google Scholar 

  • Rivera del Río R, Crespo Pichardo G, Arteaga Ramírez R, Quevedo Nolasco A (2007) Comportamiento espacio temporal de la sequía en el estado de Durango, México. Terra Latinoam 25(4):383–392

    Google Scholar 

  • Rivera J, Penalba OJC (2014) Trends and spatial patterns of drought affected area in Southern South America. Climate 2(4):264–278

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan H-L, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1058

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  • Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. In: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, pp 1397–1412

    Google Scholar 

  • Thornton PK, Ericksen PJ, Herrero M, Challinor A (2014) Climate variability and vulnerability to climate change: a review. Glob Chang Biol 20(11):3313–3328

    Article  Google Scholar 

  • Van Etten J (2009) Inter-annual rainfall variability of arid Australia: greater than elsewhere? Aust Geogr 40(1):109–120

    Article  Google Scholar 

  • Vu TM, Raghavan SV, Liong SY, Mishra A (2018) Uncertainties of gridded precipitation observations in characterizing spatio-temporal drought and wetness over Vietnam. Int J Climatol 38(4):2067–2081

    Article  Google Scholar 

  • Waswa BS (2012) Assessment of land degradation patterns in Western Kenya-implications for restoration and rehabilitation. Doctoral dissertation, Landwirtschaftlichen Fakultät Rheinischen Friedrich-Wilhelms-Universität, Bonn

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Alarcón-Herrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martinez-Cruz, D.A., Gutiérrez, M., Alarcón-Herrera, M.T. (2020). Spatial and Temporal Analysis of Precipitation and Drought Trends Using the Climate Forecast System Reanalysis (CFSR). In: Lucatello, S., Huber-Sannwald, E., Espejel, I., Martínez-Tagüeña, N. (eds) Stewardship of Future Drylands and Climate Change in the Global South. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-030-22464-6_8

Download citation

Publish with us

Policies and ethics