Skip to main content

Segmentation of 2D and 3D Objects with Intrinsically Similarity Invariant Shape Regularisers

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

  • 974 Accesses

Abstract

This paper presents a 2D and 3D variational segmentation approach based on a similarity invariant, i.e., translation, scaling, and rotation invariant shape regulariser. Indeed, shape moments of order up to 2 for shapes with limited symmetries can be combined to provide a shape normalisation for the group of similarities. In order to obtain a segmentation objective function, a two-means or two-local-means data term is added to it. Segmentation is then obtained by standard gradient descent on it. We demonstrate the capabilities of the approach on a series of experiments, of different complexity levels. We specifically target rat brain shapes in MR scans, where the setting is complex, because of bias field and complex anatomical structures. Our last experiments show that our approach is indeed capable of recovering brain shapes automatically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    DIKU, University of Copenhagen.

  2. 2.

    Center for Translational Neuromedicine, University of Copenhagen.

  3. 3.

    Anesthesiology, Yale School of Medicine, Yale University.

  4. 4.

    Center for Translational Neuromedicine, University of Rochester.

References

  1. Chan, T., Zhu, W.: Level set based shape prior segmentation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 1164–1170. IEEE (2005)

    Google Scholar 

  2. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models-their training and application. CVIU 61(1), 38–59 (1995)

    Google Scholar 

  3. Cremers, D., Kohlberger, T., Schnörr, C.: Shape statistics in kernel space for variational image segmentation. Pattern Recogn. 36(9), 1929–1943 (2003)

    Article  Google Scholar 

  4. Cremers, D., Tischhäuser, F., Weickert, J., Schnörr, C.: Diffusion snakes: introducing statistical shape knowledge into the mumford-shah functional. Int. J. Comput. Vis. 50(3), 295–313 (2002)

    Article  Google Scholar 

  5. Delfour, M., Zolésio, J.-P.: Shapes and Geometries. Advances in Design and Control, Siam (2001)

    Google Scholar 

  6. Foulonneau, A., Charbonnier, P., Heitz, F.: Affine-invariant geometric shape priors for region-based active contours. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1352–1357 (2006)

    Article  Google Scholar 

  7. Fussenegger, M., Deriche, R., Pinz, A.: A multiphase level set based segmentation framework with pose invariant shape priors. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 395–404. Springer, Heidelberg (2006). https://doi.org/10.1007/11612704_40

    Chapter  Google Scholar 

  8. Hansen, J.D.K., Lauze, F.: Local mean multiphase segmentation with HMMF models. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 396–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58771-4_32

    Chapter  Google Scholar 

  9. Hansen, J.D.K., et al.: Brain extraction and segmentation framework for bias field rich cranial MRI scans of rats. In: Annual meeting ISMRM, Paris, France, June 2018, p. 3249 (2018). Book of Abstracts

    Google Scholar 

  10. Kendall, D.: Shape manifolds, procrustean metrics and complex projective spaces. Bull. London Math. Soc. 16, 81–121 (1984)

    Article  MathSciNet  Google Scholar 

  11. Magnus, J.: On differentiating eigenvalues and eigenvectors. Econometric Theor. 1, 179–191 (1985)

    Article  Google Scholar 

  12. Mezghich, M.A., Slim, M., Ghorbel, F.: Invariant shape prior knowledge for an edge-based active contours invariant shape prior for active contours. In: 2014 International Conference on Computer Vision Theory and Applications (VISAPP) (2014), pp. 454–461. IEEE (2014)

    Google Scholar 

  13. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  14. Wang, J., Yeung, S.-K., Chan, K.L.: Matching-constrained active contours with affine-invariant shape prior. Comput. Vis. Image Underst. 132, 39–55 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

J. Hansen and F. Lauze thank S. DarknerFootnote 1, K. N. MortensenFootnote 2, S. Sanggaard (see footnote 2), H. BenvenisteFootnote 3, and M. NedergaardFootnote 4 (see footnote 2) for the data. F. Lauze acknowledges the support of the Center for Stochastic Geometry and Advanced Bioimaging (CSGB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Lauze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hansen, J.D.K., Lauze, F. (2019). Segmentation of 2D and 3D Objects with Intrinsically Similarity Invariant Shape Regularisers. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics