Skip to main content

A Fast Multi-layer Approximation to Semi-discrete Optimal Transport

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

Abstract

The optimal transport (OT) framework has been largely used in inverse imaging and computer vision problems, as an interesting way to incorporate statistical constraints or priors. In recent years, OT has also been used in machine learning, mostly as a metric to compare probability distributions. This work addresses the semi-discrete OT problem where a continuous source distribution is matched to a discrete target distribution. We introduce a fast stochastic algorithm to approximate such a semi-discrete OT problem using a hierarchical multi-layer transport plan. This method allows for tractable computation in high-dimensional case and for large point-clouds, both during training and synthesis time. Experiments demonstrate its numerical advantage over multi-scale (or multi-level) methods. Applications to fast exemplar-based texture synthesis based on patch matching with two layers, also show stunning improvements over previous single layer approaches. This shallow model achieves comparable results with state-of-the-art deep learning methods, while being very compact, faster to train, and using a single image during training instead of a large dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-squares clustering. Algorithmica 20(1), 61–76 (1998)

    Article  MathSciNet  Google Scholar 

  2. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. TOG 28(3), 24 (2009)

    Google Scholar 

  3. Galerne, B., Leclaire, A., Rabin, J.: A texture synthesis model based on semi-discrete optimal transport in patch space. SIAM J. Imaging Sci. 11(4), 2456–2493 (2018)

    Article  MathSciNet  Google Scholar 

  4. Genevay, A., Cuturi, M., Peyré, G., Bach, F.: Stochastic optimization for large-scale optimal transport. In: Proceedings of NIPS, pp. 3432–3440 (2016)

    Google Scholar 

  5. Gutierrez, J., Rabin, J., Galerne, B., Hurtut, T.: Optimal patch assignment for statistically constrained texture synthesis. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 172–183. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58771-4_14

    Chapter  Google Scholar 

  6. Kitagawa, J.: An iterative scheme for solving the optimal transportation problem. Calc. Var. Partial Differ. Equ. 51(1–2), 243–263 (2014)

    Article  MathSciNet  Google Scholar 

  7. Kitagawa, J., Mérigot, Q., Thibert, B.: A Newton algorithm for semi-discrete optimal transport. J. Eur. Math Soc. (2017)

    Google Scholar 

  8. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization for example-based synthesis. ACM TOG 24(3), 795–802 (2005)

    Article  Google Scholar 

  9. Lévy, B.: A numerical algorithm for L2 semi-discrete optimal transport in 3D. ESAIM: M2AN 49(6), 1693–1715 (2015)

    Article  MathSciNet  Google Scholar 

  10. Liu, J., Yin, W., Li, W., Chow, Y.T.: Multilevel optimal transport: a fast approximation of wasserstein-1 distances. arXiv preprint arXiv:1810.00118 (2018)

  11. Mérigot, Q.: A multiscale approach to optimal transport. Comput. Graph. Forum 30(5), 1583–1592 (2011)

    Article  Google Scholar 

  12. Oberman, A.M., Ruan, Y.: An efficient linear programming method for optimal transportation. arXiv preprint arXiv:1509.03668 (2015)

  13. Rabin, J., Peyré, G.: Wasserstein regularization of imaging problems. In: 2011 IEEE International Conference on Image Processing, ICIP 2011 (2011)

    Google Scholar 

  14. Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein barycenter and its application to texture mixing. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 435–446. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24785-9_37

    Chapter  Google Scholar 

  15. Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: Sixth International Conference on Computer Vision, pp. 59–66. IEEE (1998)

    Google Scholar 

  16. Santambrogio, F.: Optimal Transport for Applied Mathematicians. Birkäuser (2015)

    Google Scholar 

  17. Schmitzer, B.: A sparse multiscale algorithm for dense optimal transport. J. Math. Imaging Vis. 56(2), 238–259 (2016)

    Article  MathSciNet  Google Scholar 

  18. Solomon, J., et al.: Convolutional wasserstein distances: efficient optimal transportation on geometric domains. ACM Trans. Graph. (TOG) 34(4), 66 (2015)

    Article  Google Scholar 

  19. Tartavel, G., Gousseau, Y., Peyré, G.: Variational texture synthesis with sparsity and spectrum constraints. J. Math. Imaging Vis. 52(1), 124–144 (2015)

    Article  MathSciNet  Google Scholar 

  20. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.: Texture networks: feed-forward synthesis of textures and stylized images. In: Proceedings of the International Conference on Machine Learning, vol. 48, pp. 1349–1357 (2016)

    Google Scholar 

  21. Villani, C.: Topics in Optimal Transportation. American Mathematical Society (2003)

    Google Scholar 

  22. Xia, G., Ferradans, S., Peyré, G., Aujol, J.: Synthesizing and mixing stationary gaussian texture models. SIAM J. Imaging Sci. 7(1), 476–508 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This project has been carried out with support from the French State, managed by the French National Research Agency (ANR-16-CE33-0010-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arthur Leclaire or Julien Rabin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leclaire, A., Rabin, J. (2019). A Fast Multi-layer Approximation to Semi-discrete Optimal Transport. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics