Skip to main content

Provably Scale-Covariant Networks from Oriented Quasi Quadrature Measures in Cascade

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

Abstract

This article presents a continuous model for hierarchical networks based on a combination of mathematically derived models of receptive fields and biologically inspired computations. Based on a functional model of complex cells in terms of an oriented quasi quadrature combination of first- and second-order directional Gaussian derivatives, we couple such primitive computations in cascade over combinatorial expansions over image orientations. Scale-space properties of the computational primitives are analysed and it is shown that the resulting representation allows for provable scale and rotation covariance. A prototype application to texture analysis is developed and it is demonstrated that a simplified mean-reduced representation of the resulting QuasiQuadNet leads to promising experimental results on three texture datasets.

The support from the Swedish Research Council (contract 2018-03586) is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  2. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015). arXiv:1409.1556

  3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of Computer Vision and Pattern Recognition (CVPR 2016), pp. 770–778 (2016)

    Google Scholar 

  4. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: NIPS, pp. 2017–2025 (2015)

    Google Scholar 

  5. Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 354–370. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_22

    Chapter  Google Scholar 

  6. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  7. Koenderink, J.J., van Doorn, A.J.: Generic neighborhood operators. IEEE-TPAMI 14, 597–605 (1992)

    Article  Google Scholar 

  8. Lindeberg, T.: Generalized Gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space. J. Math. Imaging Vis. 40, 36–81 (2011)

    Article  MathSciNet  Google Scholar 

  9. Lindeberg, T.: A computational theory of visual receptive fields. Biol. Cybern. 107, 589–635 (2013)

    Article  MathSciNet  Google Scholar 

  10. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980)

    Article  Google Scholar 

  11. Hubel, D.H., Wiesel, T.N.: Brain and Visual Perception. Oxford University Press, New York (2005)

    Google Scholar 

  12. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30, 77–116 (1998)

    Google Scholar 

  13. Lindeberg, T.: Dense scale selection over space, time and space-time. SIAM J. Imaging Sci. 11, 407–441 (2018)

    Article  MathSciNet  Google Scholar 

  14. Lindeberg, T.: Scale-Space Theory in Computer Vision. Springer, Dordrecht (1993). https://doi.org/10.1007/978-1-4757-6465-9

    Book  MATH  Google Scholar 

  15. Johnson, E.N., Hawken, M.J., Shapley, R.: The orientation selectivity of color-responsive neurons in Macaque V1. J. Neurosci. 28, 8096–8106 (2008)

    Article  Google Scholar 

  16. Touryan, J., Felsen, G., Dan, Y.: Spatial structure of complex cell receptive fields measured with natural images. Neuron 45, 781–791 (2005)

    Article  Google Scholar 

  17. Adelson, E., Bergen, J.: Spatiotemporal energy models for the perception of motion. JOSA A 2, 284–299 (1985)

    Article  Google Scholar 

  18. Heeger, D.J.: Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992)

    Article  Google Scholar 

  19. Koenderink, J.J., van Doorn, A.J.: Receptive field families. Biol. Cybern. 63, 291–298 (1990)

    Article  MathSciNet  Google Scholar 

  20. De Valois, R.L., Cottaris, N.P., Mahon, L.E., Elfer, S.D., Wilson, J.A.: Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity. Vis. Res. 40, 3685–3702 (2000)

    Article  Google Scholar 

  21. Westö, J., May, P.J.C.: Describing complex cells in primary visual cortex: a comparison of context and multi-filter LN models. J. Neurophys. 120, 703–719 (2018)

    Article  Google Scholar 

  22. Goris, R.L.T., Simoncelli, E.P., Movshon, J.A.: Origin and function of tuning diversity in Macaque visual cortex. Neuron 88, 819–831 (2015)

    Article  Google Scholar 

  23. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE-TPAMI 29, 411–426 (2007)

    Article  Google Scholar 

  24. Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE-TPAMI 35, 1872–1886 (2013)

    Article  Google Scholar 

  25. Yamins, D.L.K., DiCarlo, J.J.: Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016)

    Article  Google Scholar 

  26. Hadji, I., Wildes, R.P.: A spatiotemporal oriented energy network for dynamic texture recognition. In: ICCV, pp. 3066–3074 (2017)

    Google Scholar 

  27. Bay, H., Ess, A., Tuytelaars, T., van Gool, L.: Speeded Up Robust Features (SURF). CVIU 110, 346–359 (2008)

    Google Scholar 

  28. Cimpoi, M., Maji, S., Vedaldi, A.: Deep filter banks for texture recognition and segmentation. In: CVPR, pp. 3828–3836 (2015)

    Google Scholar 

  29. Liu, L., Lao, S., Fieguth, P.W., Guo, Y., Wang, X., Pietikäinen, M.: Median robust extended local binary pattern for texture classification. IEEE-TIP 25, 1368–1381 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Liu, L., Long, Y., Fieguth, P.W., Lao, S., Zhao, G.: BRINT: binary rotation invariant and noise tolerant texture classification. IEEE-TIP 23, 3071–3084 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Schaefer, G., Doshi, N.P.: Multi-dimensional local binary pattern descriptors for improved texture analysis. In: ICPR, pp. 2500–2503 (2012)

    Google Scholar 

  32. Ojala, T., Pietikäinen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE-TPAMI 24, 971–987 (2002)

    Article  Google Scholar 

  33. Chan, T.H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: A simple deep learning baseline for image classification? IEEE-TIP 24, 5017–5032 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Liu, L., Fieguth, P., Guo, Y., Wang, Z., Pietikäinen, M.: Local binary features for texture classification: taxonomy and experimental study. Pattern Recogn. 62, 135–160 (2017)

    Article  Google Scholar 

  35. Mallikarjuna, P., Targhi, A.T., Fritz, M., Hayman, E., Caputo, B., Eklundh, J.O.: The KTH-TIPS2 database. KTH Royal Institute of Technology (2006)

    Google Scholar 

  36. Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE-TPAMI 31, 2032–2047 (2009)

    Article  Google Scholar 

  37. Xu, Y., Yang, X., Ling, H., Ji, H.: A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid. In: CVPR, pp. 161–168 (2010)

    Google Scholar 

  38. Carandini, M., Heeger, D.J.: Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Lindeberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lindeberg, T. (2019). Provably Scale-Covariant Networks from Oriented Quasi Quadrature Measures in Cascade. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics