Skip to main content

Computing Nonlinear Eigenfunctions via Gradient Flow Extinction

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

Abstract

In this work we investigate the computation of nonlinear eigenfunctions via the extinction profiles of gradient flows. We analyze a scheme that recursively subtracts such eigenfunctions from given data and show that this procedure yields a decomposition of the data into eigenfunctions in some cases as the 1-dimensional total variation, for instance. We discuss results of numerical experiments in which we use extinction profiles and the gradient flow for the task of spectral graph clustering as used, e.g., in machine learning applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreu, F., Caselles, V., Diaz, J.I., Mazón, J.M.: Some qualitative properties for the total variation flow. J. Funct. Anal. 188(2), 516–547 (2002)

    Article  MathSciNet  Google Scholar 

  2. Aujol, J.-F., Gilboa, G., Papadakis, N.: Theoretical analysis of flows estimating eigenfunctions of one-homogeneous functionals for segmentation and clustering. SIAM J. Imaging Sci. 11, 1416–1440 (2018)

    Article  MathSciNet  Google Scholar 

  3. Bühler, T., Hein, M.: Spectral clustering based on the graph \(p\)-laplacian. In: International Conference on Machine Learning, pp. 81–88 (2009)

    Google Scholar 

  4. Bungert, L., Burger, M.: Solution paths of variational regularization methods for inverse problems. Inverse Prob. (2019). IOP Publishing

    Google Scholar 

  5. Bungert, L., Burger, M., Chambolle, A., Novaga,M.: Nonlinear spectral decompositions by gradient flows of one-homogeneous functionals. arXiv preprint arXiv:1901.06979 (2019)

  6. Burger, M., Eckardt, L., Gilboa, G., Moeller, M.: Spectral representations of one-homogeneous functionals. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 16–27. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18461-6_2

    Chapter  Google Scholar 

  7. Burger, M., Gilboa, G., Moeller, M., Eckardt, L., Cremers, D.: Spectral decompositions using one-homogeneous functionals. SIAM J. Imaging Sci. 9(3), 1374–1408 (2016)

    Article  MathSciNet  Google Scholar 

  8. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  9. Elmoataz, A., Toutain, M., Tenbrinck, D.: On the \(p\)-laplacian and \(\infty \)-laplacian on graphs with applications in image and data processing. SIAM J. Imaging Sci. 8(4), 2412–2451 (2015)

    Article  MathSciNet  Google Scholar 

  10. Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sci. 7(4), 1937–1961 (2014)

    Article  MathSciNet  Google Scholar 

  11. Gilboa, G.: Nonlinear Eigenproblems in Image Processing and Computer Vision. ACVPR. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75847-3

    Book  MATH  Google Scholar 

  12. Meng, Z., Merkurjev, E., Koniges, A., Bertozzi, A.L.: Hyperspectral image classification using graph clustering methods. Image Process. On Line 7, 218–245 (2017)

    Article  MathSciNet  Google Scholar 

  13. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in neural information processing systems, pp. 849–856 (2002)

    Google Scholar 

  14. Nossek, R.Z., Gilboa, G.: Flows generating nonlinear eigenfunctions. J. Sci. Comput. 75(2), 859–888 (2018)

    Article  MathSciNet  Google Scholar 

  15. Schmidt, M.F., Benning, M., Schönlieb, C.-B.: Inverse scale space decomposition. Inverse Prob. 34(4), 045008 (2018)

    Article  MathSciNet  Google Scholar 

  16. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 107 (2000). Departmental Papers (CIS)

    Article  Google Scholar 

  17. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 777826 (NoMADS). LB and MB acknowledge further support by ERC via Grant EU FP7 – ERC Consolidator Grant 615216 LifeInverse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Bungert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bungert, L., Burger, M., Tenbrinck, D. (2019). Computing Nonlinear Eigenfunctions via Gradient Flow Extinction. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics