Skip to main content

Variational Image Registration for Inhomogeneous-Resolution Pairs

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

  • 969 Accesses

Abstract

We propose a variational image registration method for a pair of images with different resolutions. Traditional image registration methods match images assuming that the resolutions of the reference and target images are homogeneous. For the registration of inhomogeneous-resolution image pairs, we first introduce a resolution-conversion method to harmonise the resolution of a pair of images using the rational-order pyramid transform.Then, we develop a variational method for image registration using this resolution-conversion method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henn, S., Witsch, K.: Multimodal image registration using a variational approach. SIAM J. Sci. Comput. 25, 1429–1447 (2004)

    Article  MathSciNet  Google Scholar 

  2. Hermosillo, G., Chefd’Hotel, C., Faugeras, O.: Variational methods for multimodal image matching. IJCV 50, 329–343 (2002)

    Article  Google Scholar 

  3. Hermosillo, G., Faugeras, O.: Well-posedness of two nonrigid multimodal image registration methods. SIAM J. Appl. Math. 64, 1550–1587 (2002)

    Article  MathSciNet  Google Scholar 

  4. Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 297–304. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04268-3_37

    Chapter  Google Scholar 

  5. Shepp, L.A., Kruskal, J.: Computerized tomography: the new medical x-ray technology. Amer. Math. Monthly 85, 420–439 (1978)

    Article  MathSciNet  Google Scholar 

  6. Modersitzki, J.: Numerical Methods for Image Registration. OUP, Oxford (2004)

    MATH  Google Scholar 

  7. Rumpf, M., Wirth, B.: A nonlinear elastic shape averaging approach. SIAM J. Imaging Sci. 2, 800–833 (2009)

    Article  MathSciNet  Google Scholar 

  8. Campbell, S.L., Meyer Jr., C.D.: Generalized Inverses of Linear Transformations. Pitman, London (1979)

    MATH  Google Scholar 

  9. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31, 532–540 (1983)

    Article  Google Scholar 

  10. Burt, P.J., Adelson, E.H.: A multiresolution spline with application to image mosaics. ACM Trans. Graph. 2, 217–236 (1983)

    Article  Google Scholar 

  11. Thevenaz, P., Unser, M.: Optimization of mutual information for multiresolution image registration. IEEE Trans. Image Process. 9, 2083–2099 (2000)

    Article  Google Scholar 

  12. Ohnishi, N., Kameda, Y., Imiya, A., Dorst, L., Klette, R.: Dynamic multiresolution optical flow computation. In: Sommer, G., Klette, R. (eds.) RobVis 2008. LNCS, vol. 4931, pp. 1–15. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78157-8_1

    Chapter  Google Scholar 

  13. Kropatsch, W.G.: A pyramid that grows by powers of 2. Pattern Recogn. Lett. 3, 315–322 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Imiya .

Editor information

Editors and Affiliations

Appendix: Proofs of Theorems 1, 2 and 3

Appendix: Proofs of Theorems 1, 2 and 3

Using the matrix expression of downsampling for vectors \(\varvec{S}_q=\varvec{I}_n\otimes \varvec{e}_1^q\), where \(\varvec{e}_1^q=(1,0,\cdots ,0)^\top \in \mathbf{R}^q\), the two-dimensional downsampling is expressed as \(\varvec{G}=\varvec{S}_{q}\varvec{F}\varvec{S}_{q}^\top \). This expression derives the following lemma.

Lemma 1

Assuming that the domain of images is \(\mathcal {L}\{\varvec{\varphi }_i\varvec{\varphi }_i^\top \}_{i,j=0}^{n-1}\), the range of images downsampled by factor q is \(\mathcal {L}\{\varvec{\varphi }_i\varvec{\varphi }_j^\top \}_{i,j=0}^{\frac{1}{q}n-1}\).

The \(2p+1\)-dimensional diagonal matrix \(\varvec{N}_p=\left( \left( n_{|i-j|} \right) \right) \), where \(n_k=\frac{p-k}{p}\) for \(0\le p \le k\). is expressed as \(\varvec{N}_p=\sum _{k=0}^p a_k\varvec{D}_{n}^k,\) where \(\varvec{D}_{n}^0=\varvec{I}_n\), for an appropriate collection of coefficients \(\{a_k\}_{k=0}^p\). The linear interpolation for the two-dimensional image \(\varvec{F}\) is \(\varvec{N}_p\varvec{S}_p\varvec{F}(\varvec{N}_p\varvec{S}_p)^\top =\varvec{N}_p\varvec{S}_p\varvec{F}\varvec{S}_p^\top \varvec{N}_p^\top \). This expression implies the following lemma.

Lemma 2

Assuming that the domain of images is \(\mathcal {L}\{\varvec{\varphi }_i\varvec{\varphi }_j^\top \}_{i,j=0}^{n-1}\) the range of images interpolated by order p is \(\mathcal {L}\{\varvec{\varphi }_i\varvec{\varphi }_j^\top \}_{i,j=0}^{pn-1}\).

Furthermore, the pyramid transform of factor q is \(\frac{1}{q^2}\varvec{S}_q\varvec{N}_q\varvec{F}\varvec{N}_q^\top \varvec{S}_q^\top \), since the pyramid transform is achieved by downsampling after shift-invariant smoothing. This expression of the pyramid transform implies the following lemma.

Lemma 3

With the Neumann boundary condition, the pyramid transform of order q is a linear transform from \(\mathcal {L}\{\varvec{\varphi }_i\varvec{\varphi }_j^\top \}_{i,j=0}^{n-1}\) to \(\mathcal {L}\{\varvec{\varphi }_i\varvec{\varphi }_i^\top \}_{i,j=0}^{\frac{1}{q}n-1}\), assuming \(n=kq\).

Moreover, the matrix form of the \(q\mathrm{{/}}p\)-pyramid transform for the two-dimensional image \(\varvec{F}\) is

$$\begin{aligned} \varvec{R}_{q/p}\varvec{F}\varvec{R}_{q/p}^\top&=\frac{1}{q^2}\varvec{S}_q\varvec{N}_{q/p}\varvec{S}_p \varvec{F} (\varvec{S}_q\varvec{N}_{q/p}\varvec{S}_p)^\top ,&\varvec{N}_{q/p}&=\varvec{N}_q\varvec{N}_p. \end{aligned}$$
(45)

This expression implies the following lemma.

Lemma 4

With the Neumann boundary condition, the \(q\mathrm{{/}}p\) pyramid transform is a linear transform from \(\mathcal {L}\{\varvec{\varphi }_i\varvec{\varphi }_j^\top \}_{i,j=0}^{n-1}\) to \(\mathcal {L}\{\varvec{\varphi }_i\varvec{\varphi }_j^\top \}_{i,j=0}^{\frac{p}{q} n -1}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hosoya, K., Imiya, A. (2019). Variational Image Registration for Inhomogeneous-Resolution Pairs. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics