Skip to main content

A New Iterative Method for CT Reconstruction with Uncertain View Angles

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

Abstract

In this paper, we propose a new iterative algorithm for Computed Tomography (CT) reconstruction when the problem has uncertainty in the view angles. The algorithm models this uncertainty by an additive model-discrepancy term leading to an estimate of the uncertainty in the likelihood function. This means we can combine state-of-the-art regularization priors such as total variation with this likelihood. To achieve a good reconstruction the algorithm alternates between updating the CT image and the uncertainty estimate in the likelihood. In simulated 2D numerical experiments, we show that our method is able to improve the relative reconstruction error and visual quality of the CT image for the uncertain-angle CT problem.

The work was supported by the National Natural Science Foundation of China via Grant 11701388.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Natterer, F.: The Mathematics of Computerized Tomography. Wiley, Chicago (1986)

    MATH  Google Scholar 

  2. Benning, M., Burger, M.: Modern regularization methods for inverse problems. Acta Numerica 27, 1–111 (2018)

    Article  MathSciNet  Google Scholar 

  3. Riis, N.A.B., Frøsig, J., Dong, Y., Hansen, P.C.: Limited-data X-ray CT for underwater pipeline inspection. Inverse Prob. 34(3), 034002 (2018)

    Article  MathSciNet  Google Scholar 

  4. Vandeghinste, B., et al.: Iterative CT reconstruction using shearlet-based regularization. IEEE Tran. Nucl. Sci. 60(5), 3305–3317 (2013)

    Article  Google Scholar 

  5. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  6. Ferrucci, M., Leach, R.K., Giusca, C., Carmignato, S., Dewulf, W.: Towards geometrical calibration of X-ray computed tomography systems-a review. Measur. Sci. Technol. 26(9), 092003 (2015)

    Article  Google Scholar 

  7. Mallick, S.P., Agarwal, S., Kriegman, D.J., Belongie, S.J., Carragher, B., Potter, C.S.: Structure and view estimation for tomographic reconstruction: a bayesian approach. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2(1), pp. 2253–2260 (2006). 1641029

    Google Scholar 

  8. Fang, Y., Murugappan, S., Ramani, K.: Estimating view parameters from random projections for tomography using spherical MDS. BMC Med. Imaging 10(1), 12 (2010)

    Article  Google Scholar 

  9. Basu, S., Bresler, Y.: Uniqueness of tomography with unknown view angles. IEEE Trans. Image Process. 9(6), 1094–1106 (2000)

    Article  MathSciNet  Google Scholar 

  10. Korolev, Y., Lellmann, J.: Image reconstruction with imperfect forward models and applications in deblurring. SIAM J. Imaging Sci. 11(1), 197–218 (2018)

    Article  MathSciNet  Google Scholar 

  11. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Springer, New York (2005). https://doi.org/10.1007/b138659

    Book  MATH  Google Scholar 

  12. Madsen, R.B., Hansen, T.M.: Estimation and accounting for the modeling error in probabilistic linearized amplitude variation with offset inversion. Geophysics 83(2), N15–N30 (2018)

    Article  Google Scholar 

  13. Hansen, T.M., Cordua, K.S., Holm Jacobsen, B., Mosegaard, K.: Accounting for imperfect forward modeling in geophysical inverse problems exemplified for crosshole tomography. Geophysics 79(3), H1–H21 (2014)

    Article  Google Scholar 

  14. Calvetti, D., Dunlop, M., Somersalo, E., Stuart, A.: Iterative updating of model error for bayesian inversion. Inverse Prob. 34(2), 025008 (2018)

    Article  MathSciNet  Google Scholar 

  15. Kolehmainen, V., Tarvainen, T., Arridge, S.R., Kaipio, J.P.: Marginalization of uninteresting distributed parameters in inverse problems - application to diffuse optical tomography. Int. J. Uncertainty Quantification 1(1), 1–17 (2011)

    Article  MathSciNet  Google Scholar 

  16. Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. Roy. Stat. Soc. Ser. B: Stat. Methodol. 63(3), 425–450 (2001)

    Article  MathSciNet  Google Scholar 

  17. Kaipio, J., Somersalo, E.: Statistical inverse problems: discretization, model reduction and inverse crimes. J. Comput. Appl. Math. 198(2), 493–504 (2007)

    Article  MathSciNet  Google Scholar 

  18. Nissinen, A., Heikkinen, L.M., Kaipio, J.P.: The bayesian approximation error approach for electrical impedance tomography - experimental results. Measur. Sci. Technol. 19(1), 015501 (2008)

    Article  Google Scholar 

  19. van Aarle, W., et al.: Fast and flexible X-ray tomography using the ASTRA toolbox. Opt. Express 24(22), 25129–25147 (2016). www.astra-toolbox.com

    Article  Google Scholar 

  20. van den Berg, E., Friedlander, M.P.: Spot – A Linear-Operator Toolbox: MATLAB software. www.cs.ubc.ca/labs/scl/spot/

  21. Hansen, P.C., Jørgensen, J.S.: AIR tools II: algebraic iterative reconstruction methods, improved implementation. Numer. Algorithms 79(1), 107–137 (2017)

    Article  MathSciNet  Google Scholar 

  22. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai André Brogaard Riis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riis, N.A.B., Dong, Y. (2019). A New Iterative Method for CT Reconstruction with Uncertain View Angles. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics