Skip to main content

Statistical Prediction of Failures in Aircraft Collision Avoidance Systems

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11200))

Abstract

ACAS X is the next generation onboard collision avoidance system aimed at replacing the current standard TCAS for commercial aircraft. On-board collision avoidance systems are designed to help avoid dangerous Near Mid-Air Collision (NMAC) scenarios. Despite the fact that such systems can be very efficient in doing so, NMACs may still occur under rare circumstances. In this paper, we study the high dimensional time-series state space for encounters of aircraft equipped with ACAS X. We describe statistical modeling and learning techniques for predicting whether and when NMAC situations may occur. An iterative variable selection algorithm identifies the most influential variables for NMAC attribution. We also present a methodology for finding safety-boundaries, characterized as geometrical objects, that separate safe operational regions from dangerous ones where NMACs can occur. Even though our approach is presented in the context of ACAS X, it can be easily extended to numerous other domains including robotics, autonomous spacecraft, or self-driving cars.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kuchar, J., Drumm, A.C.: The traffic alert and collision avoidance system. Linc. Lab. J. 16(2), 277 (2007)

    Google Scholar 

  2. Hynes, C., Hardy, G., Sherry, L.: Synthesis from design requirements of a hybrid system for transport aircraft longitudinal control. Technical report NASA/TP-2007-213475, NASA (2007)

    Google Scholar 

  3. Lee, R., Kochenderfer, M.J., Mengshoel, O.J., Brat, G.P., Owen, M.P.: Adaptive stress testing of airborne collision avoidance systems. In: 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), pp. 6C2–1. IEEE (2015)

    Google Scholar 

  4. Rao, T.S. (ed.): Time Series Analysis: Methods and Applications. Elsevier, Amsterdam (2012)

    MATH  Google Scholar 

  5. MacKay, D.J.C.: Information-based objective functions for active data selection. Neural Comput. 4(4), 589–603 (1992)

    Article  Google Scholar 

  6. Cohn, D.A.: Neural network exploration using optimal experimental design. Adv. Neural Inf. Process. Syst. 6(9), 679–686 (1996)

    Google Scholar 

  7. Jones, D., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black box functions. J. Glob. Optim. 13, 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. von Essen, C., Giannakopoulou, D.: Probabilistic verification and synthesis of the next generation airborne collision avoidance system. STTT 18(2), 227–243 (2016)

    Article  Google Scholar 

  9. von Essen, C., Giannakopoulou, D.: Analyzing the next generation airborne collision avoidance system. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 620–635. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_54

    Chapter  Google Scholar 

  10. Jeannin, J.-B., et al.: A formally verified hybrid system for the next-generation airborne collision avoidance system. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 21–36. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_2

    Chapter  Google Scholar 

  11. Giannakopoulou, D., Guck, D., Schumann, J.: Exploring model quality for ACAS X. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 274–290. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6_17

    Chapter  Google Scholar 

  12. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: an efficient SMT solver for verifying deep neural networks. ArXiv e-prints, February 2017

    Chapter  Google Scholar 

  13. Madigan, S.E.D.: A flexible bayesian generalized linear model for dichotomous response data with an application to text categorization. Inst. Math. Stat. 91(54), 76 (2007)

    MathSciNet  Google Scholar 

  14. Kochenderfer, M.J., Chryssanthacopoulos, J.P.: Robust airborne collision avoidance through dynamic programming. Project Report ATC-371, Massachusetts Institute of Technology, Lincoln Laboratory (2011)

    Google Scholar 

  15. Chen, Y., Councill, I.G.: An introduction to support vector machines: a review. AI Mag. 24, 105–107 (2003)

    Google Scholar 

  16. Powers, D.M.W.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

    MathSciNet  Google Scholar 

  17. Taddy, M.A., Gramacy, R.B., Polson, N.G.: Dynamic trees for learning and design. J. Am. Stat. Assoc. 106(493), 109–123 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ranjan, P., Bingham, D., Michailidis, G.: Sequential experiment design for contour estimation from complex computer codes. Technometrics 50(4), 527–541 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Ritchie Lee for providing the dataset for our experiments. The work presented has been performed under NASA’s System-Wide Safety Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuning He .

Editor information

Editors and Affiliations

Nomenclature

Nomenclature

 

AC:

Aicraft

ACAS-X:

AC Collision Avoidance System

ALC:

Active Learning Cohn

ALM:

Active Learning MacKay

\(\varDelta ^i_{alt}\) :

difference in altitude \(i=1,2\)

\(\varDelta _z\) :

absolute vertical distance between AC

DynaTree:

Dynamic Regression Tree

E[...]:

Expectation

F1:

weighted average of P and R

FAA:

Federal Aviation Authority

FN:

False Negative

FP:

False Positive

I(X):

Improvement

LHS:

Least Horizontal Separation

NMAC:

Near Mid-Air Collision

P:

Precision

R:

Recall

\(r^i_{target}\) :

target range AC\(_i\), \(i=1,2\)

s:

slant range

SVM:

Support Vector Machine

\(T_{NMAC}\) :

Time to NMAC event

TCAS:

Traffic Collision Avoidance System

TN:

True Negative

TP:

True Positive

UAV:

Unmanned Aerial Vehicle

\(v^i_{vert}\) :

vertical speed for AC\(_i\), \(i=1,2\)

 

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, Y., Giannakopoulou, D., Schumann, J. (2019). Statistical Prediction of Failures in Aircraft Collision Avoidance Systems. In: Margaria, T., Graf, S., Larsen, K. (eds) Models, Mindsets, Meta: The What, the How, and the Why Not?. Lecture Notes in Computer Science(), vol 11200. Springer, Cham. https://doi.org/10.1007/978-3-030-22348-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22348-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22347-2

  • Online ISBN: 978-3-030-22348-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics