Advertisement

An Improved Grey Multivariable Verhulst Model for Predicting CO2 Emissions in China

  • Yi-Chung Hu
  • Hang JiangEmail author
  • Peng Jiang
  • Peiyi Kong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11589)

Abstract

A new method for discussing the relationship between CO2 emissions and bilateral FDI is proposed using grey systems theory. CO2 emissions and bilateral FDI, GDP are separately regarded as the input to, and output of, a grey system to establish a grey multivariable Verhulst model, GVM(1,N). To improve the prediction accuracy, the residual modification model are combined to the original GVM(1,N) model. Based on data relating to CO2 emissions and bilateral FDI, GDP in China from 2001 to 2014, empirical research shows that the bilateral FDI help reduce CO2 emissions, whereas the GDP results in CO2 emissions.

Keywords

CO2 emissions Bilateral FDI Grey multivariable verhulst model Residual modification 

References

  1. 1.
    Zheng, J.J., Sheng, P.F.: The impact of foreign direct investment (FDI) on the environment: market perspectives and evidence from China. Economies, 5(8) (2017).  https://doi.org/10.3390/economies5010008CrossRefGoogle Scholar
  2. 2.
    Sun, W., Wang, C.F., Zhang, C.C.: Factor analysis and forecasting of CO2 emission in Hebei, using extreme learning machine based on particle swarm optimization. J. Clean. Prod. 16, 1095–1101 (2017)CrossRefGoogle Scholar
  3. 3.
    Garcia-Martos, C., Rodiguez, J., Sanchez, M.J.: Modeling and forecasting fossil fuels, CO2 and electricity prices and their volatities. Appl. Energy 101, 363–375 (2013)CrossRefGoogle Scholar
  4. 4.
    Chen, T.: Analyzing and forecasting the global CO2 concentration: a collaborative fuzzy-neural angent network approach. J. Appl. Res. Technol. 13(3), 364–373 (2015)CrossRefGoogle Scholar
  5. 5.
    Xu, H.F., Li, Y., Huang, H.: Spatial research on the effect of financial structure on CO2 emission. Energy Procedia 118, 179–183 (2017)CrossRefGoogle Scholar
  6. 6.
    Feng, S.J., et al.: Forecasting the energy consumption of China by the grey prediction model. Energy Source Part B: Econ. Plan. Policy 7, 376–389 (2012)CrossRefGoogle Scholar
  7. 7.
    Tien, T.L.: The indirect measurement of tensile strength of material by the grey prediction model GMC (1, n). Meas. Sci. Technol. 16(6), 1322–1328 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pei, L.L., et al.: The improved GM (1, N) models with optimal background values a case study of Chinese high-tech industry. J. Grey Syst. 27(3), 223–233 (2015)Google Scholar
  9. 9.
    Wang, Z.X., Pei, L.L.: An optimized grey dynamic model for forecasting the output of high-tech industry in China. Math. Probl. Eng. 2014, 1–7 (2014).  https://doi.org/10.1155/2014/586284MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wang, Z.X., Ye, D.J.: Forecasting Chinese carbon emissions from fossil energy consumption using non-linear grey multivariable models. J. Clean. Prod. 142, 600–612 (2017)CrossRefGoogle Scholar
  11. 11.
    Liu, S.F., Lin, Y.: Grey Systems: Theory and Applications. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16158-2CrossRefzbMATHGoogle Scholar
  12. 12.
    Wang, Z.X., Dang, Y.G., Liu, S.F.: Unbiased grey verhulst model and its application. Syst. Eng.-Theory Pract. 29(10), 138–144 (2009)CrossRefGoogle Scholar
  13. 13.
    Shaikh, F., et al.: Forecasting China’s natural gas demand based on optimized nonlinear grey models. Energy 140, 941–951 (2017)CrossRefGoogle Scholar
  14. 14.
    Wang, X.Q., et al.: Grey system theory based prediction for topic trend on Internet. Eng. Appl. Artif. Intell. 29, 191–200 (2014)CrossRefGoogle Scholar
  15. 15.
    Evans, M.: An alternative approach to estimating the parameters of a generalized Grey Verhulst model: an application to steel intensity of use in the UK. Expert Syst. Appl. 41(4), 1236–1244 (2014)CrossRefGoogle Scholar
  16. 16.
    Du, Q., Wang, N., Che, L.: Forecasting China’s per capita carbon emissions under a new three-step economic development strategy. J. Resour. Ecol. 6(5), 318–323 (2015)CrossRefGoogle Scholar
  17. 17.
    Zhou, N., Fridley, D., Khanna, N.Z.: China’s energy and emissions outlook to 2050: perspectives from bottom-up energy end-use model. Energy Policy 53, 51–62 (2013)CrossRefGoogle Scholar
  18. 18.
    Gambhir, A., et al.: A hybrid modeling approach to develop scenarios for China’s carbon dioxide emissions to 2050. Energy Policy 59, 614–632 (2013)CrossRefGoogle Scholar
  19. 19.
    Liu, X., et al.: How might China achieve its 2020 emissions target? A scenario analysis of energy consumption and CO2 emissions using the system dynamics model. J. Clean. Prod. 103, 401–410 (2015)CrossRefGoogle Scholar
  20. 20.
    Deng, J.L.: Grey Theory. Huazhong University of Science & Technology Press, Wuhan (2002)Google Scholar
  21. 21.
    Liu, S.F., Lin, Y.: Grey Information: Theory and Practical Applications. Springer, London, UK (2006)Google Scholar
  22. 22.
    Wang, J., et al.: A historic review of management science research in China. Omega 36, 919–932 (2008)CrossRefGoogle Scholar
  23. 23.
    Tien, T.L.: A research on the grey prediction model GM (1, n). Appl. Math. Comput. 218(9), 4903–4916 (2012)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Tien, T.L.: The indirect measurement of tensile strength for a higher temperature by the new model IGDMC (1, n). Measurement 41(6), 662–675 (2008)CrossRefGoogle Scholar
  25. 25.
    Hsu, L.C.: Forecasting the output of integrated circuit industry using genetic algorithm based multivariable grey optimization models. Expert Syst. Appl. 36, 7898–7903 (2009)CrossRefGoogle Scholar
  26. 26.
    Lewis, C.: Industrial and Business Forecasting Methods. Butterworth Scientific, London (1982)Google Scholar
  27. 27.
    Ding, S., et al.: Forecasting Chinese CO2 emissions from fuel combustion using a novel grey multivariable model. Expert Syst. Appl. 162, 1527–1538 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yi-Chung Hu
    • 1
  • Hang Jiang
    • 2
    Email author
  • Peng Jiang
    • 3
  • Peiyi Kong
    • 4
  1. 1.Department of Business AdministrationChung Yuan Christian UniversityTaoyuanTaiwan
  2. 2.School of Business AdministrationJimei UniversityXiamenChina
  3. 3.School of BusinessShandong UniversityWeihaiChina
  4. 4.School of Economics and ManagementNanyang UniversityXiamenChina

Personalised recommendations