An Incremental Clustering Approach to Personalized Tag Recommendations

  • Yen-Hsien Lee
  • Tsai-Hsin ChuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11589)


Volumes of user-generated contents have caused the problem of information overload and hindered Internet users from browsing and retrieving information. Social tagging that allows users to annotate resources with free preferred keywords to ease the access to their collecting resources. Though social tagging benefits users managing their resources, it always suffers the problems such as diverse and/or unchecked vocabulary and unwillingness to tag because tags are freely and voluntarily assigned by users. Tag recommender systems, which follow some criteria to select from the tag space the most relevant tags to the user’s annotating resource, drastically transfer the tagging process from generation to recognition to reduce user’s cognitive effort and time. This study takes personalized tag recommendation as an incremental clustering problem and proposes a Progressive Expansion-based Tag (PET) recommendation technique. The incremental clustering assumes each object appears in sequence and then is incrementally clustered into either an appropriate existing category or a created new category. The PET technique can classify each resource into multiple categories (i.e., tags) or label it as new. While a resource is labelled as new, it will recommend a set of tags that have been used by other users and are relevant to the target user’s practices. Finally, our empirical evaluation results suggest that the proposed PET technique outperforms the traditional popularity-based tag recommendation methods, while the performance rates achieved by both techniques are not satisfying.


Tag recommender systems Personalized tag recommendation Incremental clustering Progressive tag expansion Social tagging 



This work was supported by Ministry of Science and Technology of the Republic of China under the grant MOST 106-2410-H-415-009.


  1. 1.
    Lee, B.K., Lee, W.N.: The effect of information overload on consumer choice quality in an on-line environment. Psychol. Mark. 21, 159–183 (2004)CrossRefGoogle Scholar
  2. 2.
    Wu, H., Zubair, M., Maly, K.: Harvesting social knowledge from folksonomies. In: The 17th Conference on Hypertext and Hypermedia, pp. 111–114. ACM Press (2006)Google Scholar
  3. 3.
    Musto, C., Narducci, F., de Gemmis, M., Lops, P., Semeraro, G.: A Tag recommender system exploiting user and community behavior. In: Jannach, D., et al. (eds.) The ACM RecSys 2009 Workshop on Recommender Systems & the Social Web, vol. 532. (2009)Google Scholar
  4. 4.
    Heckner, M., Heilemann, M., Wolff, C.: Personal information management vs. resource sharing: towards a model of information behaviour in social tagging systems. In: The Third International AAAI Conference on Weblogs and Social Media Conference, pp. 42–49 (2009)Google Scholar
  5. 5.
    Marvasti, A.F., Skillicorn, D.B.: Structures in collaborative tagging: an empirical analysis. In: The Thirty-Third Australasian Conference on Computer Science, vol. 102, pp. 109–116 (2010)Google Scholar
  6. 6.
    Yang, C.S., Chen, L.C.: Personalized recommendation in social media: a profile expansion approach. In: The 18th Pacific Asia Conference on Information Systems (2014)Google Scholar
  7. 7.
    Marinho, L.B., et al.: Social tagging recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 615–644. Springer, Boston, MA (2011). Scholar
  8. 8.
    Bischoff, K., Firan, C.S., Nejdl, W., Paiu, R.: Can all tags be used for search? In: The 17th ACM Conference on Information and Knowledge Management, pp. 193–202 (2008)Google Scholar
  9. 9.
    Ebbinghaus, H.: Memory: A Contribution to Experimental Psychology. Columbia University, New York (1885)Google Scholar
  10. 10.
    García, R.R., Quirós, J.S., Santos, R.G., González, S.M., Fernanz, S.M.: Interactive multimedia animation with macromedia flash in descriptive geometry teaching. Comput. Educ. 49, 615–639 (2007)CrossRefGoogle Scholar
  11. 11.
    Simon, H.A.: Models of Bounded Rationality. MIT Press, Cambridge (1997)Google Scholar
  12. 12.
    Oliver, R.L.: A cognitive model for the antecedents and consequences of satisfaction. J. Mark. Res. 17, 460–469 (1980)CrossRefGoogle Scholar
  13. 13.
    Wei, C.P., Hu, P., Lee, Y.H.: Preserving user preferences in automated document-category management: an evolution-based approach. J. Manag. Inf. Syst. 25, 109–143 (2009)CrossRefGoogle Scholar
  14. 14.
    Cattuto, C., et al.: Network properties of folksonomies. AI Commun. 20, 245–262 (2007)MathSciNetGoogle Scholar
  15. 15.
    Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in social bookmarking systems. AI Commun. 21, 231–247 (2008)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized recommendation in social tagging systems using hierarchical clustering. In: The 2008 ACM Conference on Recommender Systems, pp. 259–266. ACM (2008)Google Scholar
  17. 17.
    Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag recommendations based on tensor dimensionality reduction. In: The 2008 ACM Conference on Recommender Systems, pp. 43–50. ACM (2008)Google Scholar
  18. 18.
    Tso-Sutter, K.H.L., Marinho, L.B., Schmidt-Thieme, L.: Tag-aware recommender systems by fusion of collaborative filtering algorithms. In: The 2008 ACM Symposium on Applied Computing, pp. 1995–1999. ACM (2008)Google Scholar
  19. 19.
    Marinho, L.B., Schmidt-Thieme, L.: Collaborative tag recommendations. In: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) Data Analysis Machine Learning and Applications, pp. 533–540. Springer, Heidelberg (2008). Scholar
  20. 20.
    Sood, S., Owsley, S., Hammond, K., Birnbaum, L.: TagAssist: automatic tag suggestion for blog posts. In: The International Conference on Weblogs and Social Media (2007)Google Scholar
  21. 21.
    Chen, X., Shin, H.: Tag recommendation by machine learning with textual and social features. J. Intell. Inf. Syst. 40, 261–282 (2013)CrossRefGoogle Scholar
  22. 22.
    Hartigan, J.: Clustering Algorithms. Wiley, New York (1975)zbMATHGoogle Scholar
  23. 23.
    Yang, Y., Carbonell, J.G., Brown, R.D., Pierce, T., Archibald, B.T., Liu, X.: Learning approaches for detecting and tracking news events. IEEE Intell. Syst. 14, 32–43 (1999)CrossRefGoogle Scholar
  24. 24.
    Brooks, C.H., Montanez, N.: Improved annotation of the blogosphere via autotagging and hierarchical clustering. In: The 15th International Conference on World Wide Web, pp. 625–632. ACM Press (2006)Google Scholar
  25. 25.
    Lee, S., Chun, A.: Automatic tag recommendation for the web 2.0 blogosphere using collaborative tagging and hybrid ann semantic structures. In: The 6th Conference on WSEAS International Conference on Applied Computer Science, Stevens Point, Wisconsin, pp. 88–93 (2007)Google Scholar
  26. 26.
    Heymann, P., Ramage, D., Garcia-Molina, H.: Social tag prediction. In: The 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 531–538 (2008)Google Scholar
  27. 27.
    Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehouse. Min. 3, 1–13 (2007)CrossRefGoogle Scholar
  28. 28.
    Gonçalves, T., Quaresma, P.: A preliminary approach to the multilabel classification problem of Portuguese juridical documents. In: Pires, F.M., Abreu, S. (eds.) EPIA 2003. LNCS (LNAI), vol. 2902, pp. 435–444. Springer, Heidelberg (2003). Scholar
  29. 29.
    Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37, 1757–1771 (2004)CrossRefGoogle Scholar
  30. 30.
    Lauser, B., Hotho, A.: Automatic multi-label subject indexing in a multilingual environment. In: Koch, T., Sølvberg, I.T. (eds.) ECDL 2003. LNCS, vol. 2769, pp. 140–151. Springer, Heidelberg (2003). Scholar
  31. 31.
    Zhang, M.L., Zhou, Z.H.: ML-kNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40, 2038–2048 (2007)CrossRefGoogle Scholar
  32. 32.
    Mishne, G.: Autotag: a collaborative approach to automated tag assignment for weblog posts. In: The 15th International Conference on World Wide Web, pp. 953–954. ACM Press, New York (2006)Google Scholar
  33. 33.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006). Scholar
  34. 34.
    Rendle, S., Marinho, L.B., Nanopoulos, A., Schmidt-Thieme, L.: Learning optimal ranking with tensor factorization for tag recommendation. In: The 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, pp. 727–736. ACM Press (2009)Google Scholar
  35. 35.
    Ackerman, M., Dasgupta, S.: Incremental clustering: the case for extra clusters. In: 2014 Annual Conference on Neural Information Processing Systems, Montreal, Quebec, Canada, pp. 307–315 (2014)Google Scholar
  36. 36.
    Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information retrieval. In: The Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 626–635. ACM Press (1997)Google Scholar
  37. 37.
    Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137 (1982)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Yang, Y., Pierce, T., Carbonell, J.G.: A study on retrospective and on-line event detection. In: 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 28–36, Melbourne, Australia. ACM Press (1998)Google Scholar
  39. 39.
    Brill, E.: Some advances in rule-based part of speech tagging. In: Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94), pp. 722–727. AAAI Press (1994)Google Scholar
  40. 40.
    Apté, C., Damerau, F., Weiss, S.: Automated learning of decision rules for text categorization. ACM Trans. Inf. Syst. 12, 233–251 (1994)CrossRefGoogle Scholar
  41. 41.
    Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in folksonomies. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506–514. Springer, Heidelberg (2007). Scholar
  42. 42.
    Vladimir, B., Matjaž, Z.: Generalized cores. arXiv preprint (2002)Google Scholar
  43. 43.
    Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst. 22, 143–177 (2004)CrossRefGoogle Scholar
  44. 44.
    Chowdhury, G.: Introduction to Modern Information Retrieval. Facet Publishing, London (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Management Information SystemNational Chiayi UniversityChiayi CityTaiwan
  2. 2.Department of E-Learning Design and ManagementNational Chiayi UniversityChiayi CityTaiwan

Personalised recommendations