Skip to main content

Abstract

Plant-parasitic nematodes (PPNs) represent an important constraint for plant production worldwide. They are widely distributed around the world and are able to parasitize every plant species. Furthermore, the current restrictions on the use of chemical nematicides have increased the problems caused by PPNs, irrespective of the production system. Intensive vegetable production under protected cultivation is the system most vulnerable to PPN, especially to root-knot nematodes. Despite the high frequency of occurrence of root-knot nematodes, other PPN species occur in nematode communities, whose structure and composition are influenced by the plant species, the environmental conditions, the agronomical practices and the level of specificity of the control methods used to manage them. Integrated nematode management strategies must therefore be designed using a holistic approach that considers all the interactions between PPN species in the nematode communities, plant species and biotic and abiotic environmental conditions. The use of specific management tactics against a key PPN species only leads to changes of this species for others without solving the problem. Long-term studies that consider all of these complex relationships are therefore needed to manage the pathogenicity of the whole PPN community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios GN (2005) Plant Pathology 5th edition Academic Press

    Google Scholar 

  • Akhtar M, Malik A (2000) Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresour Technol 74:35–47

    Article  CAS  Google Scholar 

  • Anwar SA, Mahdi MM, McKenry MV et al (2013) Survey of plant-parasitic nematodes associated with four vegetable crops cultivated within tunnels. Pakistan J Zool 45:595–603

    Google Scholar 

  • Askary TH, Martinelli PRP (eds) (2015) Biocontrol agents of phytonematodes. CABI, Wallingford

    Google Scholar 

  • Aydinli G, Mennan S, Devran Z et al (2013) First report of the root-knot nematode Meloidogyne ethiopica on tomato and cucumber in Turkey. Plant Dis 97:1262

    Article  CAS  PubMed  Google Scholar 

  • Barbary A, Djian-Caporalino C, Palloix A et al (2015) Mini-review: host genetic resistance to root-knot nematodes, Meloidogyne spp., in Solanaceae from genes to the field. Pest Manag Sci 71:1591–1598

    Article  CAS  PubMed  Google Scholar 

  • Barbary A, Djian-Caporalino C, Marteu N, Fazari A, Caromel B, Castagnone-Sereno P, Palloix A (2016) Plant genetic background increasing the efficiency and durability of major resistance genes to root-knot nematodes can be resolved into a few resistance QTLs. Front Plant Sci 7:632

    Google Scholar 

  • Barker KR, Koenning SR (1998) Developing sustainable systems for nematode management. Annu Rev Phytopathol 36:165–205

    Article  CAS  PubMed  Google Scholar 

  • Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems. Wiley, London

    Google Scholar 

  • Boiteux LS, Charchar JM (1996) Genetic resistance to root-knot nematode (Meloidogyne javanica) in eggplant (Solanum melongena). Plant Breed 115:198–200

    Article  Google Scholar 

  • Briar SS, Wichman D, Reddy GVP (2016) Plant-parasitic nematode problems in organic agriculture. In: Nandwani D (ed) Organic farming for sustainable agriculture, sustainable development and biodiversity, vol 9. Springer, Cham, pp 107–122

    Chapter  Google Scholar 

  • Castagnone-Sereno P (2012) Meloidogyne enterolobii (=M. mayaguensis): profile of an emerging, highly pathogenic, root-knot nematode species. Nematology 14:133–138

    Article  Google Scholar 

  • Castillo P, Vovlas N (2007) Pratylenchus (Nematoda: Pratylenchidae): diagnosis, biology, pathogenicity and management. Leiden, Brill

    Google Scholar 

  • Chandel YS, Sunil K, Jain RK et al (2010) An analysis of nematode problems in greenhouse cultivation in Himachal Pradesh and avoidable losses due to Meloidogyne incognita in tomato. Indian J Nematol 40:198–203

    Google Scholar 

  • Chellami DO, Olson SM, Mitchell DJ et al (1997) Adaptation of soil solarization to the integrated management of soil-borne pests of tomato under humid conditions. Phytopathology 87:250–258

    Article  Google Scholar 

  • Chitwood DJ (2003) Nematicides. In: Plimmer JR (ed) Encyclopedia of agrochemicals, vol 3. Wiley, New York, pp 1104–1115

    Google Scholar 

  • Collange B, Navarrete M, Peyre G et al (2011) Root-knot nematode (Meloidogyne) management in vegetable crop production: The challenge of an agronomic system analysis. Crop Prot 30:1251–1262

    Article  Google Scholar 

  • Cuadra R, Cruz X, Fajardo JL (2000) The use of short cycle crops as trap crops for the control of root-knot nematodes. Nematropica 30:241–246

    Google Scholar 

  • Curto G, DallaValle E, De Nicola GR et al (2012) Evaluation of the activity of dhurrin and sorghum towards Meloidogyne incognita. Nematology 14:759–769

    Article  Google Scholar 

  • Curto G, DallaValle E, Matteo R et al (2016) Biofumigant effect of new defatted seed meals against the southern root-knot nematode, Meloidogyne incognita. Ann Appl Biol 169:17–26

    Article  CAS  Google Scholar 

  • Davies K, Spiegel Y (eds) (2011) Biological control of plant-parasitic nematodes: Building coherence between microbial ecology and molecular mechanisms. Springer, Dordrecht

    Google Scholar 

  • Davies KG, Kerry BR, Flynn CA (1988) Observations on the pathogenicity of Pasteuria penetrans, a parasite of root-knot nematodes. Ann Appl Biol 112:491–501

    Article  Google Scholar 

  • Davies KG, Fargette M, Balla G et al (2001) Cuticle heterogeneity as exhibited by Pasteuria spore attachment is not linked to the phylogeny of parthenocarpic root-knot nematodes (Meloidogyne spp.). Parasitology 122:111–120

    Article  PubMed  Google Scholar 

  • Decraemer W, Hunt DJ (2006) Structure and classification. In: Perry RN, Moens M (eds) Plant nematology. CABI, Wallingford, pp 3–32

    Chapter  Google Scholar 

  • Devran Z, Sogut MA, Mutlu N (2010) Response of tomato rootstocks with the Mi resistance gene to Meloidogyne incognita race 2 at different soil temperatures. Phytopathol Mediterr 49:11–17

    Google Scholar 

  • Djian-Caporalino C (2012) Root-knot nematode (Meloidogyne spp.), a growing problem in French vegetable crops. Bull OEPP/EPPO Bull 42:127–137

    Article  Google Scholar 

  • Djian-Caporalino C, Pijarowski L, Januel A et al (1999) Spectrum of resistance to root-knot nematodes and inheritance of heat-stable resistance in pepper (Capsicum annuum L.). Theor Appl Genet 99:496–502

    Article  CAS  PubMed  Google Scholar 

  • Djian-Caporalino C, Bourdy G, Cayrol JC (2005) Nematicidal and nematode-resistant plants. In: Regnault-Roger C, BJr P, Vincent C (eds) Biopesticides of plant origin. Lavoisier publishing Inc UK, pp 173–224

    Google Scholar 

  • Djian-Caporalino C, Fazari A, Arguel MJ et al (2007) Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor Appl Genet 114:473–486

    Article  CAS  PubMed  Google Scholar 

  • Djian-Caporalino C, Molinari S, Palloix A et al (2011) The reproductive potential of the root-knot nematode Meloidogyne incognita is affected by selection for virulence against major resistance genes from tomato and pepper. Eur J Plant Pathol 131:431–440

    Article  Google Scholar 

  • Djian-Caporalino C, Palloix A, Fazari A et al (2014) Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability. BMC Plant Biol 14:53–66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Djian-Caporalino C, Navarrete M, Dufils A et al (2015) Conception et évaluation d’innovations variétales et agronomiques pour maîtriser les nématodes à galles en maraîchage sous abri (le projet GEDUNEM). Les Rencontres du Végétal, Angers, 12–13 janv. 2015

    Google Scholar 

  • Djian-Caporalino C, Mateille T, Bailly-Bechet M et al (2019) Evaluating sorghums as green manure against root-knot nematodes. Crop Prot 122:142–150

    Article  Google Scholar 

  • Duponnois R, Mateille T, Sene V et al (1996) Effect of different West African species and strains of Arthrobotrys nematophagous fungi on Meloidogyne species. Entomophaga 41:475–483

    Article  Google Scholar 

  • EC Directive 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council. Directives 79/117/EEC and 91/414/EEC. Off J Eur Union, 24.11. L 309/1-50

    Google Scholar 

  • Elhady A, Giné A, Topalovic O et al (2017) Microbiomes associated with infective stages of root-knot and lesion nematodes in soil. PLoS One 12:e0177145. https://doi.org/10.1371/journal.pone.0177145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EPA (US Environmental Protection Agency) (2007) National Pesticide Survey: 1,2-Dibromo-3-Chloropropane (DBCP) https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=10003H0P.TXT. Accessed 28 Nov 2017

  • Escudero N, Ferreira SR, Lopez-Moya F et al (2016) Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fungal Biol 120:572–585

    Article  CAS  PubMed  Google Scholar 

  • Escudero N, Lopez-Moya F, Ghahremani Z et al (2017) Chitosan increases tomato root colonization by Pochonia chlamydosporia and their combination reduces root-knot nematode damage. Front Plant Sci 8:1415. https://doi.org/10.3389/fpls.2017.01415

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans AA, Perry RN (2009) Survival mechanisms. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CAB international, Wallingford, pp 201–222

    Chapter  Google Scholar 

  • Evans K, Rove JA (1998) Distribution and economic importance. In: Sharma SB (ed) Cyst nematodes. Springer, Dordrecht, pp 1–30

    Google Scholar 

  • Evans K, Trudgill DL, Webster JM (1993) Plant parasitic nematodes in temperate agriculture. CABI, Wallingford

    Google Scholar 

  • Expósito A, Munera M, Giné A et al (2018) Cucumis metuliferus is resistant to root-knot nematode Mi1.2 gene (a)virulent isolates and a promising melon rootstock. Plant Pathol 67:1161–1167. https://doi.org/10.1111/ppa.12815

    Article  CAS  Google Scholar 

  • Expósito A, García S, Giné A et al (2019) Cucumis metuliferus reduces Meloidogyne incognita virulence against the Mi1.2 resistance gene in a tomato–melon rotation sequence. Pest Manag Sci 75:1902–1910. https://doi.org/10.1002/ps.5297

    Article  CAS  PubMed  Google Scholar 

  • Ferris H, Roberts PA, Thomason IJ (1985) Nematodes. In: University of California Statewide Integrated Pest Management Project (ed) Integrated pest management for tomatoes. Division of Agriculture and Natural Resources, University of California, Oakland, CA, pp 60–65

    Google Scholar 

  • Freckman DW, Ettema CH (1993) Assessing nematode communities in agroecosystems of varying human intervention. Agric Ecosyst Environ 45:239–261

    Article  Google Scholar 

  • Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–24

    Article  CAS  PubMed  Google Scholar 

  • Gallaher RN, Dickson DW, Corella JF et al (1988) Tillage and multiple cropping systems and population-dynamics of phytoparasitic nematodes. J Nematol 2:90–94

    Google Scholar 

  • Gamliel A, Stapleton JJ (1993) Characterization of antifungal volatile compounds evolved from solarized soil amended with cabbage residues. Phytopathology 83:899–905

    Article  CAS  Google Scholar 

  • Gerič B, Strajnar P, Susič N et al (2017) Reported populations of Meloidogyne ethiopica in Europe identified as Meloidogyne luci. Plant Dis 101:1627–1632

    Article  Google Scholar 

  • Giné A, Sorribas FJ (2017a) Quantitative approach for the early detection of selection for virulence of Meloidogyne incognita on resistant tomato in plastic greenhouses. Plant Pathol 66:1338–1344. https://doi.org/10.1111/ppa.12679

    Article  CAS  Google Scholar 

  • Giné A, Sorribas FJ (2017b) Effect of plant resistance and BioAct WG (Purpureocillium lilacinum strain 251) on Meloidogyne incognita in a tomato-cucumber rotation in a greenhouse. Pest Manag Sci 73:880–887. https://doi.org/10.1002/ps.4357

    Article  CAS  PubMed  Google Scholar 

  • Giné A, Bonmatí M, Sarro A et al (2013) Natural occurrence of fungal egg parasites of root-knot nematodes, Meloidogyne spp. in organic and integrated vegetable production systems in Spain. BioControl 58:407–416. https://doi.org/10.1007/s10526-012-9495-6

    Article  Google Scholar 

  • Giné A, López-Gómez M, Vela MD et al (2014) Thermal requirements and population dynamics of root-knot nematodes on cucumber and yield losses under protected cultivation. Plant Pathol 63:1446–1453. https://doi.org/10.1111/ppa.12217

    Article  Google Scholar 

  • Giné A, Carrasquilla M, Martínez-Alonso M et al (2016) Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse. Front Plant Sci 7:164. https://doi.org/10.3389/fpls.2016.00164

    Article  PubMed  PubMed Central  Google Scholar 

  • Giné A, González C, Serrano L et al (2017) Population dynamics of Meloidogyne incognita on cucumber grafted onto the cucurbita hybrid RS841 or ungrafted and yield losses under protected cultivation. Eur J Plant Pathol 148:795–805. https://doi.org/10.1007/s10658-016-1135-z

    Article  Google Scholar 

  • Goillon C, Mateille T, Tavoillot J et al (2016) Utiliser le sorgho pour lutter contre les nématodes à galles. Phytoma La défense des végétaux 698:39–44

    Google Scholar 

  • Goodell PB, Ferris H (1989) Influence of environmental factors on the hatch and survival of Meloidogyne incognita. J Nematol 21:328–334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greco N, Di Vito M (2009) Population dynamics and damage levels. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CAB International, Wallingford, pp 246–274

    Chapter  Google Scholar 

  • Greco N, Brandonisio A, Marinis G (1982) Investigation on the biology of Heterodera schachtii in Italy. Nematol Mediterr 10:201–224

    Google Scholar 

  • Guerena M (2006) Nematodes: alternative controls. http://attra.ncat.org/attra-pub/PDF/nematode.pdf. Accessed 28 Nov 2017

  • Hallmann J, Hanisch D, Braunsmann J et al (2005) Plant-parasitic nematodes in soil-less culture systems. Nematology 7:1–4

    Article  Google Scholar 

  • Hooks CRR, Wang K-H, Ploeg A et al (2010) Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Appl Soil Ecol 46:307–320

    Article  Google Scholar 

  • Ingham E (1996) The soil foodweb: its importance in ecosystem health. http://rain.org:80/~sals/ingham.html. Accessed 28 Nov 2017

  • Islam A, Mercer CF, Leung S et al (2015) Transcription of biotic stress associated genes in white clover (Trifolium repens L.) differs in response to cyst and root-knot nematode infection. PLoS One 10:e0137981. https://doi.org/10.1371/journal.pone.0137981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JT, Haegeman A, Danchin EGJ et al (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961

    Article  PubMed  PubMed Central  Google Scholar 

  • Jourand P, Rapior S, Fargette M et al (2004) Nematostatic activity of aqueous extracts of West African Crotalaria species. Nematology 6:765–771

    Article  Google Scholar 

  • Kiewnick S, Karssen G, Brito JA et al (2008) First report of the root-knot nematode Meloidogyne enterolobii on tomato and cucumber in Switzerland. Plant Dis 92:1370

    Article  CAS  PubMed  Google Scholar 

  • Kruger DHM, Fourie JC, Malan AP (2013) Cover crops with biofumigation properties for the suppression of plant-parasitic nematodes: a review. S Afr J Enol Vitic 34:287–295

    Google Scholar 

  • Kyndt T, Denil S, Haegeman A et al (2012) Transcriptional reprogramming by root knot and migratory nematode infection in rice. New Phytol 196:887–900. https://doi.org/10.1111/j.1469-8137.2012.04311.x

    Article  CAS  PubMed  Google Scholar 

  • Lavelle P, Blouin M, Boyer J, Cadet P, Laffray D, Pham-Thi AT, Reversat G, Settle W, Zuily Y (2004) Plant parasite control and soil fauna diversity. C R Biol 327:629–638

    Article  PubMed  Google Scholar 

  • Lenz R, Eisenbeis G (2000) Short-term effects of different tillage in a sustainable farming system on nematode community structure. Biol Fertil Soils 31:237–244

    Article  Google Scholar 

  • López-Gómez M, Gine A, Vela MD et al (2014) Damage functions and thermal requirements of Meloidogyne javanica and Meloidogyne incognita on watermelon. Ann Appl Biol 165:466–473

    Article  Google Scholar 

  • López-Gómez M, Flor-Peregrín E, Talavera M et al (2015) Population dynamics of Meloidogyne javanica and its relationship with the leaf chlorophyll content in zucchini. Crop Prot 70:8–14

    Article  CAS  Google Scholar 

  • López-Llorca LV, Jansson HB, Macia Vicente JG et al (2006) Nematophagous fungi as root endophytes. In: Schulz B, Boyle C, Sieber T (eds) Soil biology: microbial root endophytes. soil biology, vol 9. Springer, Heidelberg, pp 191–206

    Google Scholar 

  • López-Pérez JA, Roubtsova T, De C, Garcia M et al (2010) The potential of five winter-grown crops to reduce root-knot nematode damage and increase yield of tomato. Nematology 42:120–127

    Google Scholar 

  • Luc M, Sikora RA, Bridge J (2005) Plant parasitic nematodes in subtropical and tropical agriculture. CABI, Wallingford

    Book  Google Scholar 

  • Madhava S, Gilbert MB (2000) The montreal protocol on substances that deplete the ozone layer. UNEP, 54 p

    Google Scholar 

  • Maleita C, Curtis R, Abrantes I (2012) Thermal requirements for the embryonic development and life cycle of Meloidogyne hispanica. Plant Pathol 61:1002–1010

    Article  Google Scholar 

  • Maluf WR, Azevedo SM, Gomes LAA et al (2002) Inheritance of resistance to the root-knot nematode Meloidogyne javanica in lettuce. Genet Mol Res 1:64–71

    Article  PubMed  Google Scholar 

  • Martínez-Medina A, Fernandez I, Lok GB et al (2017) Shifting from priming of salicylic acid to jasmonic acid regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol 213:1363–1377. https://doi.org/10.1111/nph.14251

    Article  CAS  PubMed  Google Scholar 

  • Mateille T, Schwey D, Amazouz S (2005) Sur tomates, la cartographie des indices de galles. Phytoma, la défense des végétaux 584:40–43

    Google Scholar 

  • Mateille T, Cadet P, Fargette M (2008) Control and management of plant-parasitic nematode communities in a soil conservation approach. In: Ciancio A, Mukerji KG (eds) Integrated management of plant pests and diseases, vol 2. Springer, Dordrecht, pp 79–97

    Google Scholar 

  • Mateille T, Tavoillot J, Goillon C et al (2019) Interspecific competition in plant-parasitic nematode communities may question the sustainability of soil suppressiveness in complex cropping systems. Submit to Pedobiologia

    Google Scholar 

  • MBTOC (2006) Report of the Methyl Bromide Technical Options Committee. Non-chemical alternatives adopted as replacements to methyl bromide on a large scale, United Nation Environmental Programme, UNON Publishing Section Services, Nairobi (KE), pp 39–73

    Google Scholar 

  • McSorley R (2001) Multiple cropping systems for nematode management: a review. Soil Crop Sci Soc Flor Proc 60:132–142

    Google Scholar 

  • McSorley R (2011) Overview of organic amendments for management of plant-parasitic nematodes, with case studies from Florida. J Nematol 43:69–81

    PubMed  PubMed Central  Google Scholar 

  • McSorley R, Porazinska DL (2001) Elements of sustainable agriculture. Nematropica 31:1–9

    Google Scholar 

  • McSorley R, Wang KH, Kokalis-Burelle N et al (2006) Effects of soil type and steam on nematode biological control potential of the rhizosphere community. Nematropica 36:197–214

    Google Scholar 

  • Medeiros HA, Vieira de Araújo Filho J, Grassi de Freitas L et al (2017) Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride. Sci Rep 7:40216. https://doi.org/10.1038/srep40216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melakeberhan H, Xu A, Kravchenko A et al (2006) Potential use of arugula (Eruca sativa L.) as a trap crop for Meloidogyne hapla. Nematology 8:793–799

    Article  Google Scholar 

  • Mizukubo T, Adachi H (1997) Effect of temperature on Pratylenchus penetrans development. J Nematol 29:306–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navarrete M, Djian-Caporalino C, Mateille T et al (2016) A resistant pepper used as a trap cover crop in vegetable production strongly decreases root-knot nematode infestation in soil. Agron Sustain Dev 36:68. https://doi.org/10.1007/s13593-016-0401-y

    Article  CAS  Google Scholar 

  • Nilusmas S, Mercat M, Perrot T et al (2016) A multi-seasonal model of plant-nematode interactions and its use to identify durable plant resistance deployment strategies. V International Symposium on Models for Plant Growth, Environment Control and Farming Management in Protected Cultivation, Avignon 19–22/09/2016

    Google Scholar 

  • Nyczepir AP, Thomas SH (2009) Current and future management strategies in intensive crop production systems. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CABI, Wallingford, pp 412–443

    Chapter  Google Scholar 

  • Olthof THA, Potter JW, Peterson EA (1974) Relationship between population densities of Heterodera schachtii and losses in vegetable crops in Ontorio. Phytopathology 64:549–554

    Article  Google Scholar 

  • Ornat C, Sorribas FJ (2008) Integrated management of root-knot nematodes in Mediterranean horticultural crops. In: Ciancio A, Mukerji KG (eds) Integrated management of plant pests and diseases, vol 2. Springer, Dordrecht, pp 295–320

    Google Scholar 

  • Parmelee RW, Alston DG (1986) Nematode trophic structure in conventional and no-till agroecosystem. J Nematol 18:403–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potter JW, Olthof THA (1993) Nematode pests of vegetable crops. In: Evans K, Trudgill DL, Webster JM (eds) Plant parasitic nematodes in temperate agriculture. CAB International, Wallingford, pp 171–207

    Google Scholar 

  • Rakesh G, Sharmaj NK (1991) Nematicidal properties of garlic, Allium sativum L. Indian J Nematol 21:14–18

    Google Scholar 

  • Rich JR, Dunn RA, Noling JW (2004) Nematicides: past and present uses. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology advances and perspectives: nematode management and utilization. CABI, Wallingford, pp 1179–1200

    Chapter  Google Scholar 

  • Rich JR, Brito JA, Kaur R et al (2009) Weed species as hosts of Meloidogyne: a review. Nematropica 39:157–185

    Google Scholar 

  • Roberts PA, Thomason IJ, McKinney HE (1981) Influence of non-hosts, crucifers, and fungal parasites on field populations of Heterodera schachtii. J Nematol 13:164–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson AF, Perry RN (2006) Behavior and sensory perception. In: Perry RN, Moens M (eds) Plant nematology. CABI, Wallingford, pp 210–233

    Chapter  Google Scholar 

  • Runia W, Greenberger A (2005) Preliminary results of physical soil disinfestation by hot air. Acta Hortic (698):251–256

    Google Scholar 

  • Sasser JN, Freckman DW (1987) A world perspective on nematology: the role of the society. In: Veech JA, Dickson DW (eds) Vistas on nematology. Society of nematologists, Hyattsville, pp 7–14

    Google Scholar 

  • Schomaker CH, Been TH (2006) Plant growth and population dynamics. In: Perry RN, Moens M (eds) Plant nematology. CABI, Wallingford, pp 275–301

    Chapter  Google Scholar 

  • Seinhorst JW (1970) Dynamics of population of plant parasitic nematodes. Annu Rev Phytopathol 8:131–156

    Article  Google Scholar 

  • Sikora R, Fernández E (2005) Nematode parasites of vegetables. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CABI, Wallingford, pp 319–392

    Chapter  Google Scholar 

  • Slosson Final Report (2007-2008) Trap cropping plus bionematicides for management of root-knot nematode in home gardens. Final Report for Slosson Foundation. Investigator: Becky B. Westerdahl, Professor of Nematology, Department of Nematology, University of California, Davis, p 6

    Google Scholar 

  • Stirling GR (2014) Biological control of plant-parasitic nematodes: soil ecosystem management in sustainable agriculture. CABI, Wallingford

    Book  Google Scholar 

  • Stirling GR, Smith LJ (1998) Field tests of formulated products containing either Verticillium chlamydosporium or Arthrobotrys dactyloides for biological control of root-knot nematodes. Biol Control 11:231–239

    Article  Google Scholar 

  • Talavera M, Verdejo-Lucas S, Ornat C et al (2009) Crop rotations with Mi gene resistant and susceptible tomato cultivars for management of root-knot nematodes in plastic houses. Crop Prot 28:662–667. https://doi.org/10.1016/j.cropro.2009.03.015

    Article  Google Scholar 

  • Talavera M, Sayadi S, Chirosa-Rios M et al (2012) Perception of the impact of root-knot nematode-induced diseases in horticultural protected crops of south-eastern Spain. Nematology 14:517–527

    Article  Google Scholar 

  • Taylor CE, Brown DJF (1997) Nematode vectors of plant viruses. CABI, Wallingford

    Google Scholar 

  • Thies JA (2011) Virulence of Meloidogyne incognita to expression of N gene in pepper. J Nematol 43:90–94

    PubMed  PubMed Central  Google Scholar 

  • Thies JA, Davis RF, Mueller JD et al (2004) Double-cropping cucumbers and squash after resistant bell pepper for root-knot nematode management. Plant Dis 88:589–593

    Article  PubMed  Google Scholar 

  • Tomlinson JA (1987) Epidemiology and control of virus diseases of vegetables. Ann Appl Biol 110:661–681. https://doi.org/10.1111/j.1744-7348.1987.tb04187.x

    Article  Google Scholar 

  • Trudgill DL, Bala G, Block VC et al (2000) The importance of tropical root-knot nematodes (Meloidogyne spp.) and factors affecting the utility of Pasteuria penetrans as a biocontrol agent. Nematology 2:823–845

    Article  Google Scholar 

  • Vela MD, Giné A, López-Gómez M et al (2014) Thermal time requirements of root-knot nematodes on zucchini-squash and population dynamics with associated yield losses on spring and autumn cropping cycles. Eur J Plant Pathol 140:481–490

    Article  CAS  Google Scholar 

  • Verdejo-Lucas S, Ornat C, Sorribas FJ et al (2002) Species of root-knot nematodes and fungal egg parasites recovered from vegetables in Almería and Barcelona, Spain. J Nematol 34:405–408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verdejo-Lucas S, Blanco M, Cortada L et al (2013a) Resistance of tomato rootstocks to Meloidogyne arenaria and Meloidogyne javanica under intermittent elevated soil temperatures above 28 °C. Crop Prot 46:57–62. https://doi.org/10.1016/j.cropro.2012.12.013

    Article  Google Scholar 

  • Verdejo-Lucas S, Blanco M, Talavera M et al (2013b) Fungi recovered from root-knot nematodes infecting vegetables under protected cultivation. Biocontrol Sci Tech 23:277–287. https://doi.org/10.1080/09583157.2012.756459

    Article  Google Scholar 

  • Veresoglou-Stavros D, Rillig Matthias C (2012) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8:214–217

    Article  CAS  Google Scholar 

  • Vos C, Schouteden N, van Tuinen D et al (2013) Mycorrhiza-induced resistance against the root-knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biol Biochem 60:45–54

    Article  CAS  Google Scholar 

  • Walters SA, Wehner TC, Barker KR (1996) NC-42 and NC-43: root-knot nematode-resistant cucumber germplasm. HortScience 31:1246–1247

    Article  Google Scholar 

  • Wang KH, McSorley R (2008) Exposure time to lethal temperatures for Meloidogyne incognita suppression and its implication for soil solarisation. J Nematol 40:7–12

    PubMed  PubMed Central  Google Scholar 

  • Williamson VM, Kumar A (2006) Nematode resistance in plants: the battle underground. Trends Genet 22:396–403

    Article  CAS  PubMed  Google Scholar 

  • Wilson MJ, Kaouli-Duarte T (eds) (2009) Nematodes as environmental indicators. CABI, Wallingford

    Google Scholar 

  • Zheng L, Ferris H (1991) Four types of dormancy exhibited by eggs of Heterodera schachtii. Revue Nematol 14:419–426

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Sorribas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sorribas, F.J., Djian-Caporalino, C., Mateille, T. (2020). Nematodes. In: Gullino, M., Albajes, R., Nicot, P. (eds) Integrated Pest and Disease Management in Greenhouse Crops. Plant Pathology in the 21st Century, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-22304-5_5

Download citation

Publish with us

Policies and ethics