Skip to main content

Implementation of Integrated Pest and Disease Management in Greenhouses: From Research to the Consumer

  • Chapter
  • First Online:
Integrated Pest and Disease Management in Greenhouse Crops

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 9))

Abstract

Chapters 6 to 15 in this book provide a complete view of the feasibility of Integrated Pest and Disease Management (IPDM) in protected crops. Within the framework of an advanced sustainable production system, IPDM is the primary response for the growers facing consumer demands of high quality products while at the same time addressing environmental, health/safety and socio-economic issues. Most examples of successful IPDM commercial systems have started with appropriate planning of the necessary research. However, the fact that researchers have developed an IPDM programme does not necessarily mean that growers will automatically implement it. In this chapter, we have summarized the entire process to transfer the innovative knowledge from research to practical application, with special emphasis on the application of biological control (BC) of pests and diseases and the commercial development of biological control agents (BCAs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albajes R, Alomar O (1999) Current and potential use of polyphagous predators. In: Albajes R, Lodovica Gullino M, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops, Developments in plant pathology, vol 14. Springer, Dordrecht, pp 265–275

    Chapter  Google Scholar 

  • Amoah B, Anderson J, Erram D, Gomez J, Harris A, Kivett J, Ruang-Rit K, Wang Y, Murray L, Nechols J (2016) Plant spatial distribution and predator–prey ratio affect biological control of the two spotted spider mite Tetranychus urticae (Acari: Tetranychidae) by the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Biocontrol Sci Tech 26(4):548–561

    Article  Google Scholar 

  • Arnó J, Castañé C, Riudavets J, Gabarra R (2010) Risk of damage to tomato crops by the generalist zoophytophagous predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae). Bull Entomol Res 100:105–115

    Article  PubMed  CAS  Google Scholar 

  • Bale JS (2011) Harmonization of regulations for invertebrate biocontrol agents in Europe: progress, problems and solutions. J Appl Entomol 135:503–513

    Article  Google Scholar 

  • Barratt BIP, Ehlers CAC (2017) Impacts of exotic biological control agents on non-target species and biodiversity: evidence, policy and implications. In: Coll M, Wajnberg E (eds) Environmental pest management: challenges for agronomists, ecologists, economists and policymakers. Wiley, Hoboken, pp 325–346

    Chapter  Google Scholar 

  • Boller EF, Avilla J, Joerg E, Malavolta C, Wijnands FG, Esbjerg P (2004) Integrated production: principles and technical guidelines. Bull IOBC/WPRS 27:1–12

    Google Scholar 

  • Bouagga S, Urbaneja A, Rambla J, Granell A, Pérez-Hedo M (2018) Orius laevigatus strengthens its role as a biological control agent by inducing plant defenses. J Pest Sci 91:55–64

    Article  Google Scholar 

  • Bueno VHP (2005) Implementation of biological control in greenhouses in Latin America: how far are we? pp 531–537. In: Hoddle MS (ed) International symposium on biological control of arthropods, vol II. September 12–16, FHTET-2005-08. USDA, 734p

    Google Scholar 

  • Bueno VHP, van Lenteren JC (2010) Biological control of pests in protected cultivation: implementation in Latin America and successes in Europe. Memorias, XXXVII Congreso Sociedad Colombiana de Entomologia, Bogota, DC, 30 June–2 July, pp 261–269

    Google Scholar 

  • Buitenhuis R, Shipp L, Scott-Dupree C (2010) Dispersal of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on potted greenhouse chrysanthemum. Biol Control 52(2):110–114

    Article  Google Scholar 

  • Cabello T, Gallego JR, Fernández FJ, Gámez M, Vila E, Del Pino M, Hernández-Suárez E (2012) Biological control strategies for the South American tomato moth (Lep.: Gelechiidae) in greenhouse tomatoes. J Econ Entomol 105:2085–2096

    Article  PubMed  Google Scholar 

  • Calvo FJ, Lorente MJ, Stansly PA, Belda JE (2012) Pre-plant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisa tabaci in greenhouse tomato. Entomol Exp Appl 143:111–119

    Article  Google Scholar 

  • Castañé C, Alomar O, Goula M, Gabarra R (2000) Natural populations of Macrolophus caliginosus and Dicyphus tamaninii in the control of the greenhouse whitefly in tomato crops. Bull IOBC/WPRS 23(1):221–224

    Google Scholar 

  • Cock MJW, van Lenteren JC, Brodeur J, Barratt BIP, Bigler F, Bolckmans K, Cônsoli FL, Haas F, Mason PG, Parra JP (2010) Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control? Biocontrol 55:199–218. Supplementary material on online version (case studies, natural enemy releases, country views concerning ABS)

    Article  Google Scholar 

  • Coudron TA, Yocum GD, Brandt SL (2006) Nutrigenomics: a case study in the measurement of insect response to nutritional quality. Entomol Exp Appl 121:1–14

    Article  CAS  Google Scholar 

  • De Clercq P, Mason PG, Babendreier D (2011) Benefits and risks of exotic biological control agents. BioControl 56:681–698

    Article  Google Scholar 

  • Frank SD (2010) Biological control of arthropod pests using banker plant systems: past progress and future directions. Biol Control 52(1):8–16

    Article  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioural and evolutionary ecology. Princeton University Press, Princeton, 473p

    Google Scholar 

  • Goleva I, Zebitz CP (2013) Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae). Exp Appl Acarol 61(3):259–283

    Article  CAS  PubMed  Google Scholar 

  • Greathead DJ (2003) Historical overview of biological control in Africa. In: Neuenschwander P, Borgemeister C, Langewald J (eds) Biological control in IPM systems in Africa. CAB International, Wallingford, pp 1–26

    Google Scholar 

  • Grenier S (2009) In vitro rearing of entomophagous insects – past and future trends: a minireview. Bull Insectol 62(1):1–6

    Google Scholar 

  • Hatanaka M, Bain C, Busch L (2005) Third-party certification in the global agrifood system. Food Policy 30:354–369

    Article  Google Scholar 

  • Hussey NW (1985) History of biological control in protected culture. In: Hussey NW, Scopes N (eds) Biological pest control the glasshouse experience. Sterling, New York, pp 11–22

    Google Scholar 

  • Jeger MJ (1995) The implication of integrated crop protection approaches for education and training. In: Integrated crop protection: towards sustainability? BCPC Symposium Proceedings No. 63. BCPC, Farnham, pp 457–468

    Google Scholar 

  • Leman A, Messelink G (2015) Supplemental food that supports both predator and pest: a risk for biological control? J Exp Appl Acarol 65:511–524

    Article  CAS  Google Scholar 

  • Lockwood JA, Howarth FG, Purcell MF (2001) Summary: common ground, great divides, and building bridges. In: Lockwood JA, Howarth FG, Purcell MF (eds) Balancing nature: assessing the impact of importing non-native biological control agents (an international perspective), Proceedings of Thomas Say publications in entomology. Entomological Society of America, Lanham, pp 120–130

    Google Scholar 

  • Lomelí-Flores R, Torres-Ruíz A, Rodríguez-Leyva E (2014) El control biológico de plagas en agricultura protegida en México. In: González-Hernández H, Rodríguez-Leyva E, Lomelí-Flores R (eds) Memorias XXV Curso Nacional de Control Biológico, 3–5 de noviembre de 2014, Mérida, Yucatán, México. pp 215–222

    Google Scholar 

  • Marsh T, Gallardo K (2009) Adopting biological control for ornamental crops in greenhouses. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 4(022):1–9

    Google Scholar 

  • Mason PG, Cock MJW, Barratt BIP, Klapwijk JN, van Lenteren JC, Brodeur J, Heimpel GE (2018) Best practices for the use and exchange of invertebrate biological control genetic resources relevant for food and agriculture. BioControl 63(1):149–154. https://doi.org/10.1007/s10526-017-9810-3

    Article  Google Scholar 

  • Messelink GJ, van Maanen R, van Steenpaal SEF, Janssen A (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biol Control 44:372–379

    Article  Google Scholar 

  • Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Palevsky E, Wäckers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. Biocontrol 59(4):377–393. https://doi.org/10.1007/s10526-014-9579-6

    Article  Google Scholar 

  • Moreno-Ripoll R, Gabarra R, Symondson WOC, King RA, Agustí N (2012) Trophic relationships between predators, whiteflies and their parasitoids in tomato greenhouses: a molecular approach. Bull Entomol Res 102:415–423

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Cárdenas K, Fuentes LS, Cantor RF, Rodríguez CD, Janssen A, Sabelis MW (2014) GEneralist red velvet mite predator (Balaustium sp.) performs better on a mixed diet. Exp Appl Acarol 62:19–32

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Cárdenas K, Ersin F, Pijnakker J, van Houten Y, Hoogerbrugge H, Leman A, Pappas ML, Duarte MVA, Messelink GJ, Sabelis MW, Janssen A (2017) Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator. Biol Control 105:19–26

    Article  Google Scholar 

  • Naselli M, Urbaneja A, Siscaro G, Jaques JA, Zappalà L, Flors V, Pérez-Hedo M (2010) Stage-related defense response induction in tomato plants by Nesidiocoris tenuis. Int J Mol Sci 17(8):1210

    Article  CAS  Google Scholar 

  • Nguyen DT, Vangansbeke D, De Clercq P (2014) Artificial diets support the development of the predatory mite Amblyseius swirskii. IOBC/WPRS Bull 102:215–218

    Google Scholar 

  • Nguyen-Dang L, Vankosky M, Van Laerhoven S (2016) The effects of alternative host plant species and plant quality on Dicyphus hesperus populations. Biol Control 100:94–100

    Article  Google Scholar 

  • Opit GP, Nechols JR, Margolies DC, Williams KA (2005) Survival, horizontal distribution, and economics of releasing predatory mites (Acari: Phytoseiidae) using mechanical blowers. Biol Control 33(3):344–351

    Article  Google Scholar 

  • Peshin R, Bandral RS, Zhang WJ, Wilson L, Dhawan AK (2009) Integrated pest management: a global overview of history, programs and adoption. In: Peshin R, Dhawan AK (eds) Integrated pest management: innovation-development process. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8992-3_1

    Chapter  Google Scholar 

  • Pijnakker J, Arijs Y, de Souza A, Cellier M, Wäckers F (2016) The use of Typha angustifolia (cattail) pollen to establish the predatory mites Amblyseius swirskii, Iphiseius degenerans, Euseius ovalis and Euseius gallicus in glasshouse crops. IOBC-WPRS Bull 120:47–54

    Google Scholar 

  • Riddick EW (2009) Benefits and limitations of factitious prey and artificial diets on life parameters of predatory beetles, bugs, and lacewings: a mini-review. Biocontrol 54:325–339

    Article  Google Scholar 

  • Samaras K, Pappas M, Fytas E, Broufas G (2015) Pollen suitability for the development and reproduction of Amblydromalus limonicus (Acari: Phytoseiidae). BioControl 60(6):773–782

    Article  CAS  Google Scholar 

  • Shea K, Possingham HP (2000) Optimal release strategies for biological control agents: an application of stochastic dynamic programming to population management. J Appl Entomol 37:77–86

    Google Scholar 

  • Shipp L, Elliott D, Gillespie D, Brodeur J (2007) From chemical to biological control in Canadian greenhouse crops. In: Vincent C, Goettel MS, Lazarovits G (eds) Biological control: a global perspective. CABI, Cambridge, MA, pp 118–127

    Chapter  Google Scholar 

  • Stiling P, Cornelissen T (2005) What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biol Control 34(3):236–246

    Article  Google Scholar 

  • Summerfield A, Grygorczyk A, Buitenhuis R, Poleatewich A, Brownbridge M (2015) Now putting the bios in charge. Greenh Can Mag, September, pp 34–36.

    Google Scholar 

  • Thompson SN (1999) Nutrition and culture of entomophagous insects. Annu Rev Entomol 44:561–592

    Article  CAS  PubMed  Google Scholar 

  • Thompson SN, Hagen KS (1999) Nutrition of entomophagous insects and other arthropods. In: Bellow TS, Fisher TW (eds) Handbook of biological control: principles and applications of biological control. Academic, San Diego, pp 594–652

    Chapter  Google Scholar 

  • Traugott M, Symondson WOC (2008) Molecular analysis of predation on parasitized hosts. Bull Entomol Res 98:223–231

    Article  CAS  PubMed  Google Scholar 

  • Urbaneja-Bernat P, Mollá O, Alonso Valiente M, Bolkcmans K, Urbaneja A, Tena A (2015) Sugars as complementary alternative food for the establishment of Nesidiocoris tenuis in greenhouse tomato. J Appl Entomol 139(3):161–167

    Article  CAS  Google Scholar 

  • van der Blom J (2010) Applied entomology in Spanish greenhouse horticulture. Proc Neth Entomol Soc Meet 21:9–17

    Google Scholar 

  • van Lenteren JC (1995) Integrated pest management in protected crops. In: Dent D (ed) Integrated pest management. Chapman & Hall, London, pp 311–343

    Google Scholar 

  • van Lenteren JC (2006) How not to evaluate augmentative biological control. Biol Control 39:115–118

    Article  Google Scholar 

  • van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but frustrating lack of uptake. Biocontrol 57:1–20

    Article  Google Scholar 

  • van Lenteren JC, Woets J (1988) Biological and integrated pest control in greenhouses. Annu Rev Entomol 33:239–269

    Article  Google Scholar 

  • van Lenteren JC, Hale A, Klapwijk JN, van Schelt J, Steinberg S (2003) Guidelines for quality control of commercially produced natural enemies. In: van Lenteren JC (ed) Quality control and production of biological control agents: theory and testing procedures. CAB International, Wallingford, pp 265–303

    Chapter  Google Scholar 

  • van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63:39–59

    Article  Google Scholar 

  • Vangansbeke D, Nguyen DT, Audenaert J, Gobin B, Tirry L, De Clercq P (2016) Establishment of Amblyseius swirskii in greenhouse crops using food supplements. Syst Appl Acarol 21(7/9):1174–1184

    Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Article  Google Scholar 

  • Vila E, Cabello T (2014) Biosystems engineering applied to greenhouse pest control. In: Guevara-Gonzalez R, Torres-Pacheco I (eds) Biosystems engineering: biofactories for food production in the century XXI. Springer, Cham, pp 99–128

    Chapter  Google Scholar 

  • Vila E, Martínez I, Griffiths D (2013) Formulation of sachet systems to release different species of Phytoseidae and evaluation of its efficacy to control Frankliniella occidentalis and Tetranychus urticae on peach and vineyards. In: Fourth meeting of the IOBC working group integrated control of plant-feeding mites, Paphos, Cyprus, 9–12 September 2013

    Google Scholar 

  • Vila E, Salman EB, Parra A (2016) Complementary diets for predatory mites to improve biocontrol on vegetable crops. In: Broufas G, Knapp M, De Clercq P, Walzer A, Zemek R, Palevsky E (eds) Proceedings of the 5th working group meeting at Castello de la Plana (Spain), September 7–10, 2015. IOBC/WPRS Bull 120:83–84

    Google Scholar 

  • Vila E, Morales MM, Parra A (2017) Prey mites as an in-crop food: an innovative strategy to enhance biocontrol on chrysanthemums. In: Gobin B, Buitenhuis R (eds) Proceedings of the working group meeting at Niagara Falls (Canada), 4–8 June 2017. IOBC/WPRS Bull 124:178–183

    Google Scholar 

  • Wardlow LR (1992) The role of extension services in integrated pest management in glasshouse crops in England and Wales. In: van Lenteren JC, Minks AK, de Ponti OMB (eds) Biological control and integrated crop protection: towards environmentally safer agriculture. PUDOC, Wageningen, pp 193–199

    Google Scholar 

  • Xiao Y, Avery P, Chen J, McKenzie C, Osborne L (2012) Ornamental pepper as banker plants for establishment of Amblyseius swirskii (Acari: Phytoseiidae) for biological control of multiple pest s in greenhouse vegetable production. Biol Control 63(3):279–286

    Article  Google Scholar 

  • Yang NW, Zang LS, Wang S, Guo JY, Xu HX, Zhang F, Wan FH (2014) Biological pest management by predators and parasitoids in the greenhouse vegetables in China. Biol Control 68:92–102

    Article  Google Scholar 

  • Zhao J, Guo X, Tan X, Desneux N, Zappala L, Zhang F, Wang S (2017) Using Calendula officinalis as a floral resource to enhance aphid and thrips suppression by the flower bug Orius sauteri (Hemiptera: Anthocoridae). Pest Manag Sci 73(3):515–520. https://doi.org/10.1002/ps.4474

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Riudavets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riudavets, J., Moerman, E., Vila, E. (2020). Implementation of Integrated Pest and Disease Management in Greenhouses: From Research to the Consumer. In: Gullino, M., Albajes, R., Nicot, P. (eds) Integrated Pest and Disease Management in Greenhouse Crops. Plant Pathology in the 21st Century, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-22304-5_16

Download citation

Publish with us

Policies and ethics