Skip to main content

Biological Control Agents for Control of Pests in Greenhouses

  • Chapter
  • First Online:
Integrated Pest and Disease Management in Greenhouse Crops

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 9))

Abstract

First we describe the different types of biocontrol used in greenhouses and present examples of each type. Next we summarize the history of greenhouse biocontrol, which started in 1926, showed a problematic period when synthetic chemical pesticides became available after 1945, and flourished again since the 1970s. After 1970, the number of natural enemies becoming available for commercial augmentative biocontrol in greenhouses grew very fast, as well as the industry producting these control agents. Biocontrol of the most important clusters of greenhouse pests is summarized, as well as the taxonomic groups of natural enemies that play a main role in greenhouses. More than 90% of natural enemy species used in greenhouses belong to the Arthropoda and less than 10%, many belonging to the Nematoda, are non-arthropods. This is followed by sections on finding and evaluation of potential biocontrol agents, and on mass production, storage, release and quality control of natural enemies. Since the 1970s, production of biocontrol agents has moved from a cottage industry to professional research and production facilities. Many efficient agents have been identified, quality control protocols, mass-production, shipment and release methods matured, and adequate guidance for farmers has been developed. Most natural enemy species (75%) are produced in low or medium numbers per week (hundreds to a hundred thousand), and are applied in situations where only low numbers are needed, such as private gardens, hospitals, banks, and shopping malls. The other 25% of the species are produced in numbers of 100,000 to up to millions per week and regularly released in many of the greenhouse crops. Microbial pesticides are predominantly used as corrective treatments in greenhouse crops where natural enemies are providing insufficient control. Europe is still the largest commercial market for arthropod greenhouse biocontrol agents, and North America is the largest market for microbial control agents. We then continue with a discussion on the pros and cons of use of polyphagous predators, and the use of semiochemicals. Finally, we summarize factors that indicate a positive future for greenhouse biocontrol, as well as developments frustrating its implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas S, Pérez-Hedo M, Colazza S, Urbaneja A (2014) The predatory mirid Dicyphus maroccanus as a new potential biological control agent in tomato crops. BioControl 59:565–574

    Article  Google Scholar 

  • Albajes R, Alomar O (1999) Current and potential use of polyphagous predators. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer Academic Publishers, Dordrecht, pp 265–275

    Google Scholar 

  • Albajes R, Alomar O (2008) Facultative predators. In: Capinera JL (ed) Encyclopedia of entomology. Springer, Dordrecht, pp 1400–1405

    Google Scholar 

  • Albajes R, Casadevall M, Bordas E, Gabarra R, Alomar O (1980) La mosca blanca de los invernaderos, Trialeurodes vaporariorum, en El Maresme. II. Utilización de Encarsia tricolor [Hym.: Aphelinidae] en un invernadero de tomate temprano. Anales INIA/Ser Agric 13:191–203

    Google Scholar 

  • Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) (1999) Integrated pest and disease management in greenhouse crops. Kluwer Publishers, Dordrecht. 545 pp

    Google Scholar 

  • Albajes R, Castañé C, Gabarra R, Alomar O (2006) Risks of plant damage caused by natural enemies introduced for arthropod biological control. In: Bigler F, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods: methods and risk assessment. CABI Publishing, Oxon, pp 132–144

    Chapter  Google Scholar 

  • Alomar O, Albajes R (1996) Greenhouse whitefly (Homoptera: Aleyrodidae) predation and tomato fruit injury by the zoophytophagous predator Dicyphus tamaninii (Heteroptera: Miridae). In: Alomar O, Wiedenmann RN (eds) Zoophytophagous Heteroptera: implications for life history and integrated pest management. Entomological Society of America, Lanham, pp 155–177

    Google Scholar 

  • Alvarado P, Balta O, Alomar O (1997) Efficiency of four heteroptera as predators of Aphis gossypii and Macrosiphum euphorbiae (Hom.: Aphididae). Entomophaga 42:215–226

    Article  Google Scholar 

  • Arnó J, Castañé C, Alomar O, Riudavets J, Agustí N, Gabarra R, Albajes R (2018) Forty years of biological control in Mediterranean tomato greenhouses: the story of success. Isr J Entomol 48(2):209–226

    Google Scholar 

  • Baker TC (2009) Use of pheromones in IPM. In: Radcliffe EB, Hutchison WD, Cancelado RE (eds) Integrated pest management. Cambridge University Press, Cambridge UK, pp 273–285

    Google Scholar 

  • Beitia F, Asís JD, Pedro LD, Goula M, Tormos J (2016) Importance of feeding behaviour on life cycle in the zoophytophagous bug Dicyphus geniculatus. Bull Insectology 69(2):173–180

    Google Scholar 

  • Bigler F, Babendreier D, Kuhlmann U (2006) Environmental impact of invertebrates for biological control of arthropods: methods and risk assessment. CAB Int, Wallingford, 299 pp.

    Google Scholar 

  • Bolckmans KJF, Houten YM, Van Baal AE, Castagnoli M, Nannelli R, Simoni S (2005) Mite composition comprising Glycyphagidae and phytoseiid mites, use thereof, method for rearing a phytoseiid predatory mite, rearing system for rearing said phytoseiid predatory mite and methods for biological pest control on a crop. Patent registered as PCT/NL2005/000899, Priority date: December 29, 2005

    Google Scholar 

  • Bouagga S, Urbaneja A, Rambla JL, Granell A, Pérez-Hedo M (2018a) Orius laevigatus strengthens its role as a biological control agent by inducing plant defenses. J Pest Sci 91:55–64

    Article  Google Scholar 

  • Bouagga S, Urbaneja A, Rambla JL, Flors V, Granell A, Jaques JA, Pérez-Hedo M (2018b) Zoophytophagous mirids provide pest control by inducing direct defences, antixenosis and attraction to parasitoids in sweet pepper plants. Pest Manag Sci 74(6):1286–1296

    Article  CAS  PubMed  Google Scholar 

  • Brownbridge M (2017) Biological control in greenhouse IPM systems: where we’ve been, where we are, and where we need to go? IOBC-WPRS Bull, Bull OILB-SROP 124:1–11

    Google Scholar 

  • Bueno VHP, van Lenteren JC, Lins JC Jr, Calixto AM, Montes FC, Silva DB, Santiago LD, Pérez LM (2013) New records of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) predation by Brazilian hemipteran predatory bugs. J Appl Entomol 137:29–34

    Article  Google Scholar 

  • Calvo FJ, Bolckmans K, Belda JE (2011) Control of Bemisia tabaci and Frankliniella occidentalis in cucumber by Amblyseius swirskii. BioControl 56:185–192

    Article  Google Scholar 

  • Calvo FJ, Bolckmans K, Belda JE (2012a) Biological control-based IPM in sweet pepper greenhouses using Amblyseius swirskii (Acari: Phytoseiidae). Biocontrol Sci Tech 22:1398–1416

    Article  Google Scholar 

  • Calvo FJ, Lorente MJ, Stansly PA, Belda JE (2012b) Preplant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisa tabaci in greenhouse tomato. Entomol Exp Appl 143:111–119

    Article  Google Scholar 

  • Calvo FJ, Knapp M, van Houten YM, Hoogerbrugge H, Belda JE (2015) Amblyseius swirskii: what made this predatory mite such a successful biocontrol agent? Exp Appl Acarol 65:419–433

    Article  CAS  PubMed  Google Scholar 

  • Calvo FJ, Torres-Ruiz A, Velázquez-González JC, Rodríguez-Leyva E, Lomeli-Flores JR (2016) Evaluation of Dicyphus hesperus for biological control of sweet potato whitefly and potato psyllid on greenhouse tomato. BioControl 61:415–424

    Article  Google Scholar 

  • Castañé C, Alomar O, Goula M, Gabarra R (2004) Colonization of tomato greenhouses by the predatory mirid bugs Macrolophus caliginosus and Dicyphus tamaninii. Biol Control 30:591–597

    Article  Google Scholar 

  • Castañé C, Arnó J, Alomar O (2011) Plant damage to vegetable crops by zoophytophagous mirid predators. Biol Control 59:22–29

    Article  Google Scholar 

  • Cavalloro R, Pelerents C (1989) Integrated pest management in protected vegetable crops. Balkema, Rotterdam. 416 pp

    Google Scholar 

  • Chambers R, Long S, Helyer NL (1993) Effectiveness of Orius laevigatus (Hem, Anthocoridae) for the control of Frankliniella occidentalis on cucumber and pepper in the UK. Biocontrol Sci Tech 3:295–307

    Article  Google Scholar 

  • Cock MJW, van Lenteren JC, Brodeur J, Barratt BIP, Bigler F, Bolckmans K, Cônsoli FL, Haas F, Mason PG, Parra JRP (2010) Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control? BioControl 55:199–218

    Article  Google Scholar 

  • Cocuzza GE, De Clercq P, Van de Veire M, De Cock A, Degheele D, Vacante V (1997) Reproduction of Orius laevigatus and Orius albidipennis on pollen and Ephestia kuehniella eggs. Entomol Exp Appl 82:101–104

    Article  Google Scholar 

  • Coll M, Guershon M (2002) Omnivory in terrestrial arthropods: mixing plant and prey diets. Annu Rev Entomol 47:267–297

    Article  CAS  PubMed  Google Scholar 

  • DeClerq P (2002) Dark clouds and their silver linings: exotic generalist predators in augmentative biological control. Neotrop Entomol 31:169–176

    Google Scholar 

  • Dicke M (2016) Plant phenotypic plasticity in the phytobiome: a volatile issue. Curr Opin Plant Biol 32:17–23

    Article  PubMed  Google Scholar 

  • Dorchin N (2008) Gall midges (Diptera: Cecidomyiidae). In: Capinera JL (ed) Enclyclopedia of entomology, vol 2. Springer, Dordrecht, pp 1576–1580

    Google Scholar 

  • Dunham WC (2015) Evolution and future of biocontrol. Paper presented at the 10th Annual Biocontrol Industry Meeting (ABIM), Basel, Switzerland, October 20th, 2015. http://www.abim.ch/index.php?eID=tx_nawsecuredl&u=0&g=0&t=1489234639&hash=9a70d39f93f7e559c74c63844ae047a9aa3c37ea&file=fileadmin/abim/documents/presentations2015/Keynote_Dunham_ABIM_2015.pdf. Cited 10 March 2017

  • Durán-Prieto J, Castañe C, Calvet C, Camprubi A, Battaglia D, Trotta V, Fanti P (2017) Tomato belowground – aboveground interactions: Rhizophagus irregularis affects foraging behavior and life history traits of the predator Macrolophus pygmaeus (Hemiptera: Miridae). Arthropod Plant Interact 11:15–22

    Article  Google Scholar 

  • EC (2009) Sustainable use directive. European Parliament and of the Council of 21 October 2009 establishing a framework for community action to achieve the sustainable use of pesticides. Off J Eur Union L309:71–86

    Google Scholar 

  • Fatouros NE, Dicke M, Mumm R, Meiners T, Hilkers M (2008) Foraging behavior of egg parasitoids exploiting chemical information. Behav Ecol 19:677–689

    Article  Google Scholar 

  • Fauvel G, Malausa JC, Kaspar B (1987) Etude en laboratoire des principales caracteristiques biologiques de Macrolophus caliginosus (Heteroptera: Miridae). Entomophaga 35:529–543

    Article  Google Scholar 

  • Gabarra R, Castañé C, Bordas E, Albajes R (1988) Dicyphus tamaninii as a beneficial insect and pest in tomato crops in Catalonia, Spain. Entomophaga 33:219–228

    Article  Google Scholar 

  • Gillespie DR, McGregor R, Sanchez JA, Quiring SL, Van Laerhoven DMJ, Roitberg BD (2007) An endemic omnivorous predator for control of greenhouse pests. In: Vincent C, Goettel M, Lazarovits G et al (eds) Biological control: a global perspective. CABI Publishing, UK, pp 128–135

    Chapter  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioural and evolutionary ecology. Princeton University Press, Princeton, New Jersey, USA. 473 pp

    Google Scholar 

  • Gurr GM, You M (2016) Conservation biological control of pests in the molecular era: new opportunities to address old constraints. Front Plant Sci 6:1255. https://doi.org/10.3389/fpls.2015.01255

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagen KS (1962) Biology and ecology of predacious Coccinellidae. Annu Rev Entomol 7:289–326

    Article  Google Scholar 

  • Hamdan AJS, Abu-Awad IT (2008) Biological aspects of the predatory bug Orius laevigatus (Fiber) [Hemiptera: Anthocoridae] when fed on the tobacco whitefly Bemisia tabaci (Gennadius) [Homoptera: Aleyrodidae] spread on tomato and eggplant. Dirasat: Agric Sci 35:81–91

    Google Scholar 

  • Hussey NW, Bravenboer L (1971) Control of pests in glasshouse culture by the introduction of natural enemies. In: Huffaker CB (ed) Biological control. Plenum, New York, USA, pp 195–216

    Google Scholar 

  • Ingegno BL, Candian V, Psomadelis I, Bodino N, Tavella L (2017) The potential of host plants for biological control of Tuta absoluta by the predator Dicyphus errans. Bull Entomol Res 107(3):340–348

    Article  CAS  PubMed  Google Scholar 

  • Jacas JA, Urbaneja A, Viñuela E (2006) History and future of introduction of exotic arthropod biological control agents in Spain: a dilemma? BioControl 51:1–30

    Article  Google Scholar 

  • James DG (2005) Further field evaluation of synthetic herbivore-induced plan volatiles as attractants for beneficial insects. J Chem Ecol 31:481–495. https://doi.org/10.1007/s10886-005-2020-y

    Article  CAS  PubMed  Google Scholar 

  • Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BC, Villarroel CA, Ataide LM, Dermauw W, Glas JJ, Egas M, Janssen A, Van Leeuwen T, Schuurink RC, Sabelis MW, Alba JM (2015) Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Ann Bot 115:1015–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambion J, Ingegno BL, Tavella L, Alomar O, Perdikis D (2016) Companion plants for predatory bugs. Fact sheet no 4. Cost action FA1105 – BioGreenhouse

    Google Scholar 

  • Lamichhane JR, Bischoff-Schaefer M, Blumel S, Dachbrodt-Saaydeh S, Dreux L, Jansen JP, Kiss J, Köhl J, Kudsk P, Malausa T, Nicot P, Ricci P, Thibierge J, Villeneuve F (2017) Identifying obstacles and ranking common biological control research priorities for Europe to manage most economically important pests in arable, vegetable and perennial crops. Pest Manag Sci 73:14–21

    Article  CAS  PubMed  Google Scholar 

  • Lanzoni A, Martelli R, Pezzi F (2017) Mechanical release of Phytoseiulus persimilis and Amblyseius swirskii on protected crops. Bull Insectology 70(2):245–250

    Google Scholar 

  • Lattin JD (1999) Bionomics of the Anthocoridae. Annu Rev Entomol 44:207–231

    Article  CAS  PubMed  Google Scholar 

  • Lommen STE, de Jong PW, Pannebakker BA (2018) Time to bridge the gap between exploring and exploiting: prospects for utilizing intraspecific genetic variation to optimise arthropods for augmentative pest control. Entomologia Experimentalis et Applicata 162:108–123

    Google Scholar 

  • Lundgren JG, Fergen JK, Riedell WE (2008) The influence of plant anatomy on oviposition and reproductive success of the omnivorous bug Orius insidiosus. Anim Behav 75:1495–1502

    Article  Google Scholar 

  • Mallinger RE, Hogg DB, Gratton C (2011) Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. J Econ Entomol 104:115–124

    Article  PubMed  Google Scholar 

  • McEwen P, New T, Whittington A (2001) Lacewings in the crop environment. Cambridge University Press, Cambridge, UK. 546 pp

    Google Scholar 

  • McMurtry JA, Croft BA (1997) Life-styles of Phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321

    Article  CAS  PubMed  Google Scholar 

  • Messelink GJ, van Steenpaal SEF, Ramakers PMJ (2006) Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. BioControl 51:753–768

    Article  Google Scholar 

  • Messelink GJ, van Maanen R, van Steenpaal SEF, Janssen A (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biol Control 44:372–379

    Article  Google Scholar 

  • Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Palevsky E, Wäckers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl 59:377–393

    Article  Google Scholar 

  • Messelink GJ, Bloemhard CMJ, Hoogerbrugge H, van Schelt J, Ingegno BL, Tavella L (2015) Evaluation of mirid predatory bugs and release strategy for aphid control in sweet pepper. J Appl Entomol 139:333–341

    Article  Google Scholar 

  • Moerkens R, Berckmoes E, Van Damme V, Ortega-Parra N, Hanssen I, Wuytack M, Wittemans L, Casteels H, Tirry L, De Clercq P, De Vis R (2016) High population densities of Macrolophus pygmaeus on tomato plants can cause economic fruit damage: interaction with Pepino mosaic virus? Pest Manag Sci 72:1350–1358

    Article  CAS  PubMed  Google Scholar 

  • Nomikou N, Janssen A, Schraag R, Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp Appl Acar 25:271–291

    Article  CAS  Google Scholar 

  • Nomikou M, Janssen A, Schraag R, Sabelis MW (2002) Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Exp Appl Acarol 27:57–68

    Article  PubMed  Google Scholar 

  • Obrycki JJ, Kring TJ (1998) Predaceous Coccinellidae in biological control. Annu Rev Entomol 43(1):295–321

    Article  CAS  PubMed  Google Scholar 

  • Pappas M, Steppuhn A, Geuss D, Topalidou N, Zografou A, Sabelis MW, Broufas GD (2015) Beyond predation: the zoophytophagous predator Macrolophus pygmaeus induces tomato resistance against spider mites. PLoS One 10(5):e0127251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pappas ML, Steppuhn A, Broufas GD (2016) The role of phytophagy by predators in shaping plant interactions with their pests. Commun Integr Biol 9(2):e1145320

    Article  PubMed  PubMed Central  Google Scholar 

  • Park H-H, Shipp L, Buitenhuis R (2010) Predation, development, and oviposition by the predatory mite Amblyseius swirkii (Acari: Phytoseiidae) on tomato russet mite (Acari: Eriophyidae). J Econ Entomol 103(3):563–569

    Article  PubMed  Google Scholar 

  • Perdikis D, Fantinou A, Lykouressis D (2011) Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biol Control 59:13–21

    Article  Google Scholar 

  • Pérez-Hedo M, Urbaneja A (2016) The zoophytophagous predator Nesidiocoris tenuis: a successful but controversial biocontrol agent in tomato crops. In: Horowitz AR, Ishaaya I (eds) Advances in insect control and resistance management. Springer, Dordrecht, pp 121–138

    Chapter  Google Scholar 

  • Pérez-Hedo M, Bouagga S, Jaques JA, Flors V, Urbaneja A (2015) Tomato plant responses to feeding behavior of three zoophytophagous predators (Hemiptera: Miridae). Biol Control 86:46–51

    Article  Google Scholar 

  • Pérez-Hedo M, Rambla JL, Granell A, Urbaneja A (2018) Biological activity and specificity of Miridae-induced plant volatiles. BioControl 63:203–213. https://doi.org/10.1007/s10526-017-9854-4

    Article  CAS  Google Scholar 

  • Peterson JA, Ode PJ, Oliveira-Hofman C, Harwood JD (2016) Integration of plant defense traits with biological control of arthropod pests: challenges and opportunities. Front Plant Sci 7:1794. https://doi.org/10.3389/fpls.2016.01794

    Article  PubMed  PubMed Central  Google Scholar 

  • Pineda SM, Figueroa M, José I et al. (2016) Life history, diagnosis, and biological aspects of Engytatus varians (Hemiptera: Miridae), a predator of Bactericera cockerelli (Hemiptera: Triozidae). Biocontrol Sci Tech 26(8):1073–1086

    Article  Google Scholar 

  • Poinar GO, Grewal PS (2012) History of entomopathogenic nematology. J Nematol 44:153–161

    PubMed  PubMed Central  Google Scholar 

  • Ravensberg WJ (2011) A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Springer, Dordrecht, Netherlands. 383 pp

    Chapter  Google Scholar 

  • Research and Markets (2016a) Biopesticides global strategic business report. http://www.researchandmarkets.com/publication/mlv3aqe/347972. Cited 10 March 2017

  • Research and Markets (2016b) Global pesticides market segmented by type, application area and geography. Trends and forecasts (2015–2020). Sustainability, regulation & competition. http://www.researchandmarkets.com/research/4hd338/global_pesticides. Cited 10 March 2017

  • Sanchez J, Lacasa A (2002) Modelling population dynamics of Orius laevigatus and O. albidipennis (Hemiptera: Anthocoridae) to optimize their use as biological control agents of Frankliniella occidentalis (Thysanoptera: Thripidae). Bull Entomol Res 92:77–88

    CAS  PubMed  Google Scholar 

  • Secretariat of the Convention on Biological Diversity (2011) Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity: text and annex, Convention on Biological Diversity. United Nations, Montreal, Canada

    Google Scholar 

  • Silva DB, Bueno VHP, Calvo FJ, van Lenteren JC (2017) Do nymphs and adults of three Neotropical zoophytophagous mirids damage leaves and fruits of tomato? Bull Entomol Res 107(2):200–207

    Article  CAS  PubMed  Google Scholar 

  • Speyer ER (1927) An important parasite of the greenhouse white-fly (Trialeurodes vaporariorum Westwood). Bull Entomol Res 17:301–308

    Article  Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    Article  CAS  PubMed  Google Scholar 

  • Tommasini MG (2004) Collection of Orius species in Italy. Bull Insectology 57:65–72

    Google Scholar 

  • Tommasini MG, Nicoli G (1996) Evaluation of Orius spp. as biological control agents of thrips pests. Further experiments on the existence of diapause in Orius laevigatus. OILB/SORP Bull 19:183–186

    Google Scholar 

  • Tommasini MG, van Lenteren JC, Burgio G (2004) Biological traits and predation capacity of four Orius species on two prey species. Bull Insectology 57:79–94

    Google Scholar 

  • van der Blom J (2017) Control Biológico en cultivos hortícolas en Almería: balance después de 10 años. Bol SEEA 2:34–38

    Google Scholar 

  • van der Ent S, Knapp M, Klapwijk J, Moerman E, van Schelt J, de Weert S, Dik A, Schulthess F (2017) Knowing and recognizing: the biology of pests, diseases and their natural enemies. Koppert Biological Systems, Berken en Rodenrijs. 443 pp.

    Google Scholar 

  • van Lenteren JC (2000) A greenhouse without pesticides: fact of fantasy? Crop Prot 19:375–384. https://doi.org/10.1016/S0261-2194(00)00038-7

    Article  Google Scholar 

  • van Lenteren JC (ed) (2003) Quality control and production of biological control agents: theory and testing procedures. CABI Publishing, Wallingford, UK. 327 pp

    Google Scholar 

  • van Lenteren JC (2010) Ecology: cool science, but does it help? Wageningen University, Wageningen. 44 pp. ISBN 978-90-8585-580-4

    Google Scholar 

  • van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57:1–20. https://doi.org/10.1007/s10526-011-9395-1

    Article  Google Scholar 

  • van Lenteren JC, Woets J (1988) Biological and integrated pest control in greenhouses. Annu Rev Entomol 33:239–269. https://doi.org/10.1146/annurev.en.33.010188.001323

    Article  Google Scholar 

  • van Lenteren JC, Bale J, Bigler F, Hokkanen HMT, Loomans AJM (2006) Assessing risks of releasing exotic biological control agents of arthropod pests. Annu Rev Entomol 51:609–634. + supplemental material. https://doi.org/10.1146/annurev.ento.51.110104.151129

    Article  CAS  PubMed  Google Scholar 

  • van Lenteren JC, Hemerik L, Lins JC, Bueno VHP (2016) Functional responses of three neotropical mirid predators to eggs of Tuta absoluta on tomato. Insects 7(3):34. https://doi.org/10.3390/insects7030034

    Article  PubMed Central  Google Scholar 

  • van Lenteren JC, Bolckmans K, Köhl J, Ravensberg W, Urbaneja A (2018a) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl. https://doi.org/10.1007/s10526-017-9801-4

    Article  Google Scholar 

  • van Lenteren JC, Bueno VHP, Calvo FJ, Calixto AM, Montes FC (2018b) Comparative effectiveness and injury to tomato plants of three neotropical mirid predators of Tuta absoluta (Lepidoptera: Gelechiidae). J Econ Entomol. 111(3):1080–1086

    Google Scholar 

  • van Lenteren JC, Bueno VHP, Burgio G, Lanzoni A, Montes FC, Silva DB, de Jong PW, Hemerik L (2019) Pest kill rate as aggregate evaluation criterion to rank biological control agents: a case study with Neotropical predators of on tomato. Bull Entomol Res 1–9. https://doi.org/10.1017/S0007485319000130

    Article  CAS  PubMed  Google Scholar 

  • van Maanen R, Vila E, Sabelis MW, Janssen A (2010) Biological control of broad mites (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii. Exp Appl Acarol 52(1):29–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Venzon M, Janssen A, Sabelis MW (2002) Prey preference and reproductive success of the generalist predator Orius laevigatus. Oikos 97:116–124

    Article  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Article  Google Scholar 

  • Wäckers FL, van Rijn PCJ, Bruin J (eds) (2005) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, UK. 356 pp

    Google Scholar 

  • Wheeler AG (2001) Biology of the plant bugs (Hemiptera: Miridae): pests, predators, opportunists. Cornell University Press, Cornell, USA. 507 pp

    Google Scholar 

  • Wheeler AG, Krimmel BA (2015) Mirid (Hemiptera: Heteroptera) specialists of sticky plants: adaptations, interactions, and ecological implications. Annu Rev Entomol 60:393–414

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. A.J.M. Loomans (The Netherlands food and consumer product safety authority (NVWA)) and Dr. M. Knapp (Koppert Biological Systems, The Netherlands) are thanked for helping us updating the list of recently marketed exotic and native biological control agents in Europe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joop C. van Lenteren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Lenteren, J.C., Alomar, O., Ravensberg, W.J., Urbaneja, A. (2020). Biological Control Agents for Control of Pests in Greenhouses. In: Gullino, M., Albajes, R., Nicot, P. (eds) Integrated Pest and Disease Management in Greenhouse Crops. Plant Pathology in the 21st Century, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-22304-5_14

Download citation

Publish with us

Policies and ethics