Skip to main content

Automated Vibrational Signal Recognition and Playback

  • Chapter
  • First Online:
Biotremology: Studying Vibrational Behavior

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 6))

Abstract

Behavioural manipulation of insects by exploiting the substrate-borne vibrational communication has gained significant attention in the past years. Advances in understanding mating behaviour, vibration registration and signal processing algorithms allow the design of an efficient low-cost autonomous system. Primary use of such an autonomous system is to study the vibrational communication in insects in which communication is based on rapid duetting interactions. More applied uses involve monitoring the insect population in a particular area, attracting and capturing or repelling the insect. One main habitat used by vibration-producing insects is woody and herbaceous plant tissues, which significantly affect the frequency-temporal parameters of the signals that are being transmitted through such substrates. Furthermore, amplitudes of such signals are typically low and subjected to masking by incidental noise of a biotic and abiotic origin. Despite the described challenges, proof-of-concept solutions exist and are briefly presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aide TM, Mitchell T, Corrada-Bravo C, Campos-Cerqueira M, Milan C, Vega G, Alvarez R (2013) Real-time bioacoustics monitoring and automated species identification. PeerJ 1:e103. https://doi.org/10.7717/peerj.103

    Article  PubMed  PubMed Central  Google Scholar 

  • Bedoya C, Isaza C, Daza JM, López J (2014) Automatic recognition of anuran species based on syllable identification. Ecol Inform 24:200–209

    Article  Google Scholar 

  • Berouti M, Schwartz R, Makhoul J (1979) Enhancement of speech corrupted by acoustic noise. In: IEEE international conference on acoustics, speech, and signal processing. IEEE, Washington, pp 208–211

    Google Scholar 

  • Bilski P, Bobiński P, Krajewski A, Witomski P (2017) Detection of wood boring insects’ larvae based on the acoustic signal analysis and the artificial intelligence algorithm. Arch Acoust 42:61–70

    Article  Google Scholar 

  • Bimbot F, Bonastre JF, Fredouille C, Gravier G, Magrin-Chagnolleau I, Meignier S, Merlin T, Ortega-García J, Petrovska-Delacrétaz D, Reynolds DA (2004) A tutorial on text-independent speaker verification. EURASIP J Adv Signal Process 2004:430–451

    Article  Google Scholar 

  • Blumstein DT, Mennill DJ, Clemins P, Girod L, Yao K, Patricelli G, Deppe J, Krakauer AH, Clark C, Cortopassi KA, Hanser SF, McCowan B, Ali AM, Kirschel ANG (2011) Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus. J Appl Ecol 48:758–767

    Article  Google Scholar 

  • Boll S (1979) Suppression of acoustic noise in speech using spectral subtraction. IEEE T Acoust Speech 27:113–120

    Article  Google Scholar 

  • Bou-Ghazale SE, Hansen JHL (2000) A comparative study of traditional and newly proposed features for recognition of speech under stress. IEEE Trans Speech Audio Process 8:429–442

    Article  Google Scholar 

  • Boumans L, Johnsen A (2015) Stonefly duets: vibrational sexual mimicry can explain complex patterns. J Ethol 33:87–107

    Article  Google Scholar 

  • Chesmore ED, Ohya E (2004) Automated identification of field-recorded songs of four British grasshoppers using bioacoustic signal recognition. B Entomol Res 94:319–330

    Article  CAS  Google Scholar 

  • Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. BioScience 55:323–334

    Article  Google Scholar 

  • Cocroft RB, Gogala M, Hill PSM, Wessel A (2014) Studying vibrational communication. Springer, Berlin

    Book  Google Scholar 

  • Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50

    Article  PubMed  CAS  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    Google Scholar 

  • de Groot M, Derlink M, Pavlovčič P, Prešern J, Čokl A, Virant-Doberlet M (2011) Duetting behaviour in the leafhopper Aphrodes Makarovi (Hemiptera: Cicadellidae). J Insect Behav 25:419–440

    Article  Google Scholar 

  • Derlink M (2014) Vibrational signals, reproductive isolation and speciation in the genus Aphrodes Curtis, 1883 (Hemiptera: Cicadeliidae). PhD thesis, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia

    Google Scholar 

  • Derlink M, Pavlovčič P, Stewart AJA, Virant-Doberlet M (2014) Mate recognition in duetting species: the role of male and female vibrational signals. Anim Behav 90:181–193

    Article  Google Scholar 

  • Donoho DL (1995) De-noising by soft-thresholding. IEEE T Inform Theory 41:613–627

    Article  Google Scholar 

  • Ephraim Y, Malah D (1984) Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator. IEEE T Acoust Speech 32:1109–1121

    Article  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V (2012) Exploitation of insect vibrational signals reveals a new method of pest management. PLoS One 9:e100029. https://doi.org/10.1371/journal.pone.0032954

    Google Scholar 

  • Ganchev T, Potamitis I (2007) Automatic acoustic identification of singing insects. Bioacoustics 16:281–328

    Article  Google Scholar 

  • Giuliani G, Bozzi-Pietra S, Donati S (2003) Self-mixing laser diode vibrometer. Meas Sci Technol 14:24–32

    Article  CAS  Google Scholar 

  • Goncharoff V, VonColln E, Morris R (1996) Efficient calculation of spectral tilt from various LPC parameters. Naval command, control and ocean surveillance center (NCCOSC), RDT and E division. http://www.dtic.mil/dtic/tr/fulltext/u2/a308580.pdf

  • Gray R (1984) Vector quantization. IEEE ASSP Mag 1:4–29

    Article  Google Scholar 

  • Gutiérrez A, Ruiz V, Moltó E, Tapia G, del Mar Téllez M (2010) Development of a bioacoustic sensor for the early detection of red palm weevil (Rhynchophorus Ferrugineus Olivier). Crop Prot 29:671–676

    Article  Google Scholar 

  • Halkias XC, Paris S, Glotin H (2013) Classification of mysticete sounds using machine learning techniques. J Acoust Soc Am 134:3496–3505

    Article  PubMed  Google Scholar 

  • Hammond TJ, Bailey WJ, Hammond GR (2003) An automatic acoustic response system for behavioural studies of duetting insects. Bioacoustics 14:3–14

    Article  Google Scholar 

  • Harris FJ (1978) On the use of windows for harmonic analysis with the discrete Fourier transform. Proc IEEE 66:51–83

    Article  Google Scholar 

  • Hill PSM, Shadley JR (2001) Talking back: sending soil vibration signals to lekking prairie mole cricket males. Am Zool 41:1200–1214

    Google Scholar 

  • Hussein WB, Hussein MA, Becker T (2010) Detection of the red palm weevil Rhynchophorus ferrugineus using its bioacoustics features. Bioacoustics 19:177–194

    Article  Google Scholar 

  • Jorge LAC, Roda VO, Posadas A (2013) Video and sound fusion by feature subset selection in insect behavior monitoring. In: Workshop de Visão computacional. https://pdfs.semanticscholar.org/5b04/788e7189fa24f473fb11fcdee642731d1a07.pdf

  • Kalan AK, Mundry R, Wagner OJ, Heinicke S, Boesch C, Kühl HS (2015) Towards the automated detection and occupancy estimation of primates using passive acoustic monitoring. Ecol Indic 54:217–226

    Article  Google Scholar 

  • King S (2015) You talkin’ to me? Interactive playback is a powerful yet underused tool in animal communication research. Biol Lett 11. https://doi.org/10.1098/rsbl.2015.0403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korinšek G (2017) Recognizing species-specific vibrational signals of A. bicincta “Dragonja” males and reproducing female replies in real time. PhD thesis, University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia

    Google Scholar 

  • Korinšek G, Derlink M, Virant-Doberlet M, Tuma T (2016) An autonomous system of detecting and attracting leafhopper males using species- and sex-specific substrate borne vibrational signals. Comput Electron Agr 123:29–39

    Article  Google Scholar 

  • Kovach KA, Hall ML, Vehrencamp SL, Mennill DJ (2014) Timing isn’t everything: responses of tropical wrens to coordinated duets, uncoordinated duets and alternating solos. Anim Behav 95:101–109

    Article  Google Scholar 

  • Kuhelj A (2015) Sexual competitors in the communication strategy of the southern green stink bug (Nezara viridula, Pentatomidae) and the leafhoppers of the genus Aphrodes (Cicadellidae). PhD thesis, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia

    Google Scholar 

  • Kuhelj A, de Groot M, Blejec A, Virant-Doberlet M (2015) The effect of timing of female vibrational reply on male signalling and searching behaviour in the leafhopper Aphrodes makarovi. PLoS One 10:1–15

    Article  CAS  Google Scholar 

  • Kuhelj A, de Groot M, Blejec A, Virant-Doberlet M (2016) Sender-receiver dynamics in leafhopper vibrational duetting. Anim Behav 114:139–146

    Article  Google Scholar 

  • Lampson BD, Han YJ, Khalilian A, Greene J, Mankin RW, Foreman EG (2013) Automatic detection and identification of brown stink bug, Euschistus servus, and southern green stink bug, Nezara viridula, (Heteroptera: Pentatomidae) using intraspecific substrate-borne vibrational signals. Comput Electron Agr 91:154–159

    Article  Google Scholar 

  • LeCun Y, Bottou L, Genevieve OB, Müller KR (1998) Efficient backprop. In: Orr GB, Müller KR (eds) Neural networks: tricks of the trade. Springer, Berlin, pp 9–50

    Chapter  Google Scholar 

  • Legendre F, Marting PR, Cocroft RB (2012) Competitive masking of vibrational signals during mate searching in a treehopper. Anim Behav 83:361–368

    Article  Google Scholar 

  • Lehmann GUC, Frommolt KH, Lehmann AW, Riede K (2014) Baseline data for automated acoustic monitoring of Orthoptera in a mediterranean landscape, the Hymettos, Greece. J Insect Conserv 18:909–925

    Article  Google Scholar 

  • Linde Y, Buzo A, Gray R (1980) An algorithm for vector quantizer design. IEEE T Commun 28:84–95

    Article  Google Scholar 

  • Lujo S, Hartman E, Norton K, Pregmon EA, Rohde BB, Mankin RW (2016) Disrupting mating behavior of Diaphorina citri (Liviidae). J Econ Entomol 109:2373–2379

    Article  CAS  PubMed  Google Scholar 

  • Madisetti VK (2009) The digital signal processing handbook. CRC Press, Broken Sound Parkway

    Google Scholar 

  • Magdon-Ismail M, Purnell JT (2012) Approximating the covariance matrix of GMMs with low-rank perturbations. Int J Data Mining, Model Manag 4:107–122

    Google Scholar 

  • Magnani A, Pesatori A, Norgia M (2012) Self-mixing vibrometer with real-time digital signal elaboration. Appl Optics 51:5318–5325

    Article  Google Scholar 

  • Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE T Pattern Anal 11:674–693

    Article  Google Scholar 

  • Mankin RW, Brandhorst-Hubbard J, Flanders KL, Zhang M, Crocker RL, Lapointe SL, McCoy CW, Fisher JR, Weaver DK (2000) Eavesdropping on insects hidden in soil and interior structures of plants. J Econ Entomol 93:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Mankin RW, Hubbard JL, Flanders KL (2007) Acoustic indicators for mapping infestation probabilities of soil invertebrates. J Econ Entomol 100:790–800

    Article  CAS  PubMed  Google Scholar 

  • Mankin RW, Smith MT, Tropp JM, Atkinson EB, Jong DY (2008) Detection of Anoplophora glabripennis (Coleoptera: Cerambycidae) larvae in different host trees and tissues by automated analyses of sound-impulse frequency and temporal patterns. J Econ Entomol 101:838–849

    Article  CAS  PubMed  Google Scholar 

  • Mankin RW, Hagstrum DW, Smith MT, Roda AL, Kairo MTK (2011) Perspective and promise: a century of insect acoustic detection and monitoring. Am Entomol 57:30–44

    Article  Google Scholar 

  • Mankin RW, Rohde BB, McNeill SA, Paris TM, Zagvazdina NI, Greenfeder S (2013) Diaphorina citri (Hemiptera: Liviidae) responses to microcontroller-buzzer communication signals of potential use in vibration traps. Fla Entomol 96:1546–1555

    Article  Google Scholar 

  • Mankin RW, Rohde B, McNeill S (2016) Vibrational duetting mimics to trap and disrupt mating of the devastating Asian citrus psyllid insect pest. Proc Mtgs Acoust 25:010006

    Google Scholar 

  • Marques TA, Len T, Martin SW, Mellinger DK, Ward JA, Moretti DJ, Harris D, Tyack PL (2012) Estimating animal population density using passive acoustics. Biol Rev Camb Philos 88:287–309

    Article  Google Scholar 

  • Mazzoni V, Lucchi A, Čokl A, Prešern J, Virant-Doberlet M (2009) Disruption of the reproductive behaviour of Scaphoideus titanus by playback of vibrational signals. Entomol Exp Appl 133:174–185

    Article  Google Scholar 

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. B Math Biophys 5:115–133

    Article  Google Scholar 

  • McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York

    Book  Google Scholar 

  • McNett GD, Luan LH, Cocroft RB (2010) Wind-induced noise alters signaler and receiver behavior in vibrational communication. Behav Ecol Sociobiol 64:2043–2051

    Article  Google Scholar 

  • Moattar MH, Homayounpour MM (2009) A simple but efficient real-time voice activity detection algorithm. In: 17th European signal processing conference, EURASIP, Glasgow, Scotland, pp 824–828

    Google Scholar 

  • Pinhas J, Soroker V, Hetzroni A, Mizrach A, Teicher M, Goldberger J (2008) Automatic acoustic detection of the red palm weevil. Comput Electron Agr 63:131–139

    Article  Google Scholar 

  • Platt J (1998) Fast training of support vector machines using sequential minimal optimization. In: Advances in kernel methods: support vector learning. MIT Press, Cambridge, pp 41–65

    Google Scholar 

  • Polajnar J, Svenšek D, Čokl A (2012) Resonance in herbaceous plant stems as a factor in vibrational communication of pentatomid bugs (Heteroptera: Pentatomidae). J Roy Soc Interface 9:1898–1907

    Article  Google Scholar 

  • Polajnar J, Eriksson A, Stacconi MVR, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2014) The process of pair formation mediated by substrate-borne vibrations in a small insect. Behav Process 107:68–78

    Article  Google Scholar 

  • Polajnar J, Eriksson A, Virant-Doberlet M, Mazzoni V (2016) Mating disruption of a grapevine pest using mechanical vibrations: from laboratory to the field. J Pest Sci 89:909–921

    Article  Google Scholar 

  • Potamitis I (2014) Automatic classification of a taxon-rich community recorded in the wild. PLoS One 9:1–11

    Article  CAS  Google Scholar 

  • Potamitis I, Ganchev T, Kontodimas D (2009) On automatic bioacoustic detection of pests: the cases of Rhynchophorus ferrugineus and Sitophilus oryzae. J Econ Entomol 102:1681–1690

    Article  PubMed  Google Scholar 

  • Potamitis I, Ntalampiras S, Jahn O, Riede K (2014) Automatic bird sound detection in long real-field recordings: applications and tools. Appl Acoust 80:1–9

    Article  Google Scholar 

  • Rabiner LR, Juang BH (1993) Fundamentals of speech recognition. Prentice-Hall, Inc., Upper Saddle River

    Google Scholar 

  • Rabiner LR, Schafer RW (2007) Introduction to digital speech processing. Found Trends Signal Process 1:1–194

    Article  Google Scholar 

  • Rach MM, Gomis HM, Granado OL, Malumbres MP, Campoy AM, Martín JJS (2013) On the design of a bioacoustic sensor for the early detection of the red palm weevil. Sensors 13:1706–1729

    Article  PubMed Central  Google Scholar 

  • Ramírez J, Segura JC, Benítez C, de la Torre Á, Rubio A (2004) Efficient voice activity detection algorithms using long-term speech information. Speech Commun 42:271–287

    Article  Google Scholar 

  • Rebar D, Höbel G, Rodríguez RL (2012) Vibrational playback by means of airborne stimuli. J Exp Biol 215:3513–3518

    PubMed  Google Scholar 

  • Reynolds DA, Rose RC (1995) Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Trans Speech Audio Process 3:72–83

    Article  Google Scholar 

  • Rohde B, Paris TM, Heatherington EM, Hall DG, Mankin RW (2013) Responses of Diaphorina citri (Hemiptera: Psyllidae) to conspecific vibrational signals and synthetic mimics. Ann Entomol Soc Am 106:392–399

    Article  Google Scholar 

  • Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65:386–408

    Article  CAS  PubMed  Google Scholar 

  • Specht D (1990) Probabilistic neural networks. Neural Netw 3:109–118

    Article  Google Scholar 

  • Stevens SS, Volkmann J, Newman EB (1937) A scale for the measurement of the psychological magnitude pitch. J Acoust Soc Am 8:185–190

    Article  Google Scholar 

  • Šturm R (2015) Effect of biotic noise on signaling behaviour of male leafhoppers from the genus Aphrodes. Master’s thesis, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia

    Google Scholar 

  • Tishechkin DY (2011) Calling signals in sympatric species of the far-eastern Aphrophora (Homoptera: Auchenorrhyncha: Aphrophoridae): regularities of communication channel segregation. Russ Entomol J 20:57–64

    Article  Google Scholar 

  • Van Loan C (1992) Computational frameworks for the fast Fourier transform. Society for Industrial and Applied Mathematics, Philadelphia. https://doi.org/10.1137/1.9781611970999

  • Widrow B, Hoff ME (1960) Adaptive switching circuits. IRE WESCON convention record. http://www.dtic.mil/dtic/tr/fulltext/u2/241531.pdf

  • Zorović M, Čokl A (2015) Laser vibrometry as a diagnostic tool for detecting wood-boring beetle larvae. J Pest Sci 88:107–112

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Maja Derlink, Rok Šturm and Anka Kuhelj for their help with behavioural experiments and statistical analyses. We are also grateful to Peggy Hill for language manuscript edits. The work received financial support from the Slovenian Research Agency (core funding no. P1-0255 and P2-0246, as well as research project J1-8142).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korinšek, G., Tuma, T., Virant-Doberlet, M. (2019). Automated Vibrational Signal Recognition and Playback. In: Hill, P., Lakes-Harlan, R., Mazzoni, V., Narins, P., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Studying Vibrational Behavior . Animal Signals and Communication, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-22293-2_9

Download citation

Publish with us

Policies and ethics