Skip to main content

Vibrational Trapping and Interference with Mating of Diaphorina citri

  • Chapter
  • First Online:
Biotremology: Studying Vibrational Behavior

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 6))

Abstract

Microcontroller-platform devices have been constructed that detect Diaphorina citri male vibrational communication calls and broadcast mimics of female vibrational replies. The devices successfully interfere with mating of virgin pairs of Diaphorina citri in 1-h tests on citrus trees, reducing the mating percentage significantly from 57% in the control to 13% in disruption tests. Video and audio monitoring of searching behaviors in laboratory bioassays indicate that males are attracted to the source of the female reply mimics. The percentage of mating may be reduced by the following: (1) interference of a louder and earlier reply mimic more attractive to the male than the female reply; (2) masking of the female reply by the louder mimic; or (3) reduction of female responsiveness in the presence of other female replies, or combinations thereof. In male D. citri trapping bioassays, the device has successfully trapped 45% of males stimulated to initiate search behavior in 1-h tests on citrus trees. Positive and negative effects of social, flush-seeking, and phototactic behaviors of males and females are discussed that may affect the utility of these devices in field applications. In addition, potential applications are discussed for low-cost, modified microcontroller-platform devices that discriminate insect-produced feeding and movement vibrations from background noise in field studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammar E-D, Hall DG, Shatters RG Jr (2013) Stylet morphometrics and citrus leaf vein structure in relation to feeding behavior of the Asian citrus psyllid Diaphorina citri, vector of citrus Huanglongbing bacterium. PLoS One 8:e59914

    CAS  PubMed Central  Google Scholar 

  • Anco DJ, Gottwald TR (2015) Within orchard edge effects of the azimuth of the sun on Diaphorina citri adults in mature orchards. J Citrus Pathol 2:1–9

    Google Scholar 

  • Bae Y, Moon YJ (2008) Aerodynamic sound generation of flapping wing. J Acoust Soc Am 124:72–81

    PubMed  Google Scholar 

  • Barth FG, Blekmann H, Bohnenberger J, Seyfarth E-A (1988) Spiders of genus Cupiennius Simon 1891 (Araneae, Ctenidae). II. On the vibratory environment of a wandering spider. Oecologia 77:194–201

    PubMed  Google Scholar 

  • Beloti VH, Santos F, Alves GR, Bento JMS, Yamamoto PT (2017) Curry leaf smells better than citrus to females of Diaphorina citri (Hemiptera: Liviidae). Arthropod-Plant Interact 11(5):709–716

    Google Scholar 

  • Bimbot F, Bonastre JF, Fredouille C, Guillaume Gravier IMC, Meignier S, Merlin T, Ortega-García J, Petrovska-Delacrétaz D, Reynolds DA (2004) A tutorial on text-independent speaker verification. EURASIP J Appl Signal Process 2004:430–451

    Google Scholar 

  • Bracewell RN (1984) The fast Hartley transform. Proc IEEE 72:1010–1018

    Google Scholar 

  • Brownell P, Farley RD (1979) Orientation to vibrations in sand by the nocturnal scorpion, Paruroctonus mesaensis: mechanisms of target localization. J Comp Physiol A 131:31–38

    Google Scholar 

  • Castro-García S, Blanco-Roldán GL, Gil-Ribes JA, Agüera-Vega J (2008) Dynamic analysis of olive trees in intensive orchards under forced vibration. Trees 22:795–802

    Google Scholar 

  • Catling HD (1970) Distribution of the psyllid vectors of citrus greening disease with notes on the biology and bionomics of Diaphorina citri. FAO Plant Prot Bull 18:8–15

    Google Scholar 

  • Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334

    Google Scholar 

  • Cocroft RB, Shugart HJ, Konrad KT, Tibbs K (2006) Variation in plant substrates and its consequences for insect vibrational communication. Ethology 112:779–789

    Google Scholar 

  • Čokl AA, Millar JG (2009) Manipulation of insect signaling for monitoring and control of insect pests. In: Ishaaya I, Horowitz AR (eds) Biorational control of arthropod pests. Springer, Berlin, pp 279–316

    Google Scholar 

  • Čokl A, Virant-Doberlet M, Zorović M (2006) Sense organs involved in the vibratory communication of bugs. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication. CRC Press, New York, NY, pp 45–52

    Google Scholar 

  • Cornell HV, Hawkins BA (1995) Survival patterns and mortality sources of herbivorous insects: some demographic trends. Am Nat 145:563–593

    Google Scholar 

  • Du X, Chen S, Qiu G, He L, Wu C (2014) Mechanical admittance measurement and analysis of dwarf Chinese hickory trees under impact excitations. Trans ASABE 57:345–354

    Google Scholar 

  • Eben A, Mühlethaler R, Gross J, Hoch H (2015) First evidence of acoustic communication in the pear psyllid Cacopsylla pyri L. (Hemiptera: Psyllidae). J Pest Sci 88:87–95

    Google Scholar 

  • Ganchev T, Potamitis I (2007) Automatic acoustic identification of singing insects. Bioacoustics 16:281–328

    Google Scholar 

  • Gordon SD, Sandoval N, Mazzoni V, Krugner R (2017) Mating interference of glassy-winged sharpshooters, Homalodisca vitripennis. Entomol Exp et Appl 164:27–34

    Google Scholar 

  • Grafton-Cardwell EE, Stelinski LL, Stansly PA (2013) Biology and management of Asian citrus psyllid, vector of the Huanglongbing pathogens. Annu Rev Entomol 58:413–432

    CAS  PubMed  Google Scholar 

  • Gupta SK, Ehsani R, Kim NH (2015) Optimization of a citrus canopy shaker harvesting system: properties and modeling of tree limbs. Trans ASABE 58:971–985

    Google Scholar 

  • Hager FA, Kirchner WH (2014) Directional vibration sensing in the termite Macrotermes natalensis. J Exp Biol 217:2526–2530

    PubMed  Google Scholar 

  • Halbert SE, Manjunath KL (2004) Asian citrus psyllid (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida. Fla Entomol 87:330–353

    Google Scholar 

  • Hall DG, Albrigo LG (2007) Estimating the relative abundance of flush shoots in citrus with implications on monitoring insects associated with flush. HortScience 42:364–368

    Google Scholar 

  • Hall DG, Wenninger EJ, Hentz MG (2011) Temperature studies with the Asian citrus psyllid, Diaphorina citri: cold hardiness and temperature thresholds for oviposition. J Insect Sci 11(83):1–15

    Google Scholar 

  • Hall DG, Richardson ML, Ammar ED, Halbert SE (2012) Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease. Entomol Exp Appl 146:207–223

    Google Scholar 

  • Hall DG, Hentz MG, Patt JM (2015) Behavioral assay on Asian citrus psyllid attraction to orange jasmine. J Insect Behav 28:555–568

    Google Scholar 

  • Hartman E, Rohde B, Lujo S, Dixon M, McNeill S, Mankin RW (2017) Behavioral responses of male Diaphorina citri (Hemiptera: Liviidae) to mating communication signals from vibration traps in citrus (Sapindales: Rutaceae) trees. Fla Entomol 100:767–771

    Google Scholar 

  • Heslop-Harrison G (1960) Sound production in the Homoptera with special reference to sound producing mechanisms in the Psyllidae. J Nat Hist 3:633–640

    Google Scholar 

  • Hofstetter RW, Dunn DD, McGuire R, Potter KA (2014) Using acoustic technology to reduce bark beetle reproduction. Pest Manag Sci 70:24–27

    CAS  PubMed  Google Scholar 

  • Ichikawa T (1979) Studies on the mating behavior of four species of Auchenorrhynchous Homoptera which attack the rice plant. Mem Fac Agric Kagawa Univ 34:1–60

    Google Scholar 

  • Jenkins DA, Hall DG, Goenaga R (2015) Diaphorina citri (Hemiptera: Liviidae) abundance in Puerto Rico declines with elevation. J Econ Entomol 108:252–258

    PubMed  Google Scholar 

  • Kennedy JS, Crawley L, McLaren AD (1967) Spaced out gregariousness in sycamore aphids Drepanosiphum platanoides (Schrank) (Hemiptera, Callaphididae): with a statistical appendix. J Anim Ecol 36:147–170

    Google Scholar 

  • Korinšek G, Derlink M, Virant-Doberlet M, Tuma T (2016) An autonomous system of detecting and attracting leafhopper males using species- and sex-specific substrate borne vibrational signals. Comput Elecron Agric 123:20–39

    Google Scholar 

  • Krugner R, Gordon SD (2018) Mating disruption of Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) by playback of vibrational signals in vineyard trellis. Pest Manag Sci 74(9):2013–2019. https://doi.org/10.1002/ps.4930

    Article  CAS  Google Scholar 

  • Kuhelj A, Virant-Doberlet M (2017) Male-male interactions and male mating success in the leafhopper Aphrodes makarovi. Ethology 123:425–433

    Google Scholar 

  • Kuhelj A, de Groot M, Blejec A, Virant-Doberlet M (2015) The effect of timing of female vibrational reply on male signalling and searching behaviour in the leafhopper Aphrodes makarovi. PLoS One 10(10):e0139020. https://doi.org/10.1371/journal.pone.0139020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lampson BD, Han YJ, Khalilian A, Greene J, Mankin RW, Foreman EG (2013) Automatic detection and identification of brown stink bug, Euschistus servus, and southern green stink bug, Nezara viridula, (Heteroptera: Pentatomidae) using intraspecific substrate-borne vibrational signals. Comput Electron Agric 91:154–159

    Google Scholar 

  • Liao YC, Yang MM (2015) Acoustic communication of three closely related psyllid species. A case study in clarifying allied species using substrate-borne signals (Hemiptera: Psyllidae: Cacopsylla). Ann Entomol Soc Am 108:902–911

    Google Scholar 

  • Liao YC, Yang MM (2017) First evidence of vibrational communication in Homotomidae (Psylloidea) and comparison of substrate-borne signals of two allied species of the genus Macrohomotoma Kuwayama. J Insect Behav 30(5):567–581

    Google Scholar 

  • Liao YC, Huang SS, Yang MM (2016) Substrate-borne signals, specific recognition, and plant effects on the acoustics of two allied species of Trioza, with the description of a new species (Psylloidea: Triozidae). Ann Entomol Soc Am 109:906–917

    Google Scholar 

  • Lin C-P (2006) Social behaviour and life history of membracine treehoppers. J Nat Hist 40:1887–1907

    Google Scholar 

  • Liu YH, Tsai JH (2000) Effects of temperature on biology and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae). Ann Appl Biol 137:201–206

    Google Scholar 

  • Lubanga UK, Guédot C, Percy DM, Steinbauer MJ (2014) Semiochemical and vibration al cues and signals mediating mate finding and courtship in Psylloidea (Hemiptera): a synthesis. Insects 5:577–595

    PubMed  PubMed Central  Google Scholar 

  • Lubanga UK, Drijfhout FP, Farnier K, Steinbauer MJ (2016) The long and short of mate attraction in a Psylloid: do semiochemicals mediate mating in Aacanthocnema dobsoni Froggatt? J Chem Ecol 42:163–172

    CAS  PubMed  Google Scholar 

  • Lujo S, Hartman E, Norton K, Pregmon EA, Rohde BB, Mankin RW (2016) Disrupting mating behavior of Diaphorina citri (Liviidae). J Econ Entomol 109:2373–2379

    CAS  PubMed  Google Scholar 

  • Mankin RW (2012) Applications of acoustics in insect pest management. CAB Rev 7:001

    Google Scholar 

  • Mankin RW, Hubbard JL, Flanders KL (2007) Acoustic indicators for mapping infestation probabilities of soil invertebrates. J Econ Entomol 100:790–800

    CAS  PubMed  Google Scholar 

  • Mankin RW, Moore A, Samson PR, Chandler KJ (2009) Acoustic characteristics of dynastid beetle stridulations. Fla Entomol 92:123–133

    Google Scholar 

  • Mankin RW, Hodges RD, Nagle HT, Pereira RM, Koehler PG (2010) Acoustic indicators for targeted detection of stored product and urban insect pests by inexpensive infrared, acoustic and vibrational detection of movement. J Econ Entomol 103:1636–1646

    CAS  PubMed  Google Scholar 

  • Mankin RW, Hagstrum DW, Smith MT, Roda AL, Kairo MTK (2011) Perspective and promise: a century of insect acoustic detection and monitoring. Am Entomol 57:30–44

    Google Scholar 

  • Mankin RW, Rohde BB, McNeill SA, Paris TM, Zagvazdina NI, Greenfeder S (2013) Diaphorina citri (Hemiptera: Liviidae) responses to microcontroller-buzzer communication signals of potential use in vibration traps. Fla Entomol 96:1546–1555

    Google Scholar 

  • Mankin RW, Al-Ayedh HY, Aldryhim Y, Rohde B (2016a) Acoustic detection of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) and Oryctes elegans (Coleoptera: Scarabaeidae) in Phoenix dactylifera (Arecales: Arecacae) trees and offshoots in Saudi Arabian orchards. J Econ Entomol 109:622–628

    CAS  PubMed  Google Scholar 

  • Mankin RW, Rohde BB, McNeill SA (2016b) Vibrational duetting mimics to trap and disrupt mating of the devastating Asian citrus psyllid insect pest. Proc Meetings Acoust 25:010006

    Google Scholar 

  • Mankin RW, Stanaland DR, Haseeb M, Rohde B, Menocal O, Carrillo D (2018a) Assessment of plant structural characteristics, health, and ecology using bioacoustic tools. Proc Meet Acoust 33:010003

    Google Scholar 

  • Mankin RW, Burman H, Menocal O, Carrillo D (2018b) Acoustic detection of Mallodon dasystomus (Coleoptera: Cerambycidae) in Persea americana (Laurales: Lauraceae) branch stumps. Fla Entomol 101:321–323

    Google Scholar 

  • Martini X, Stelinski LL (2017) Influence of abiotic factors on flight initiation by Asian citrus psyllid (Hemiptera: Liviidae). Environ Entomol 46:369–375

    PubMed  Google Scholar 

  • Martini X, Kuhns EH, Hoyte A, Stelinski LL (2014) Plant volatiles and density-dependent conspecific female odors are used by Asian citrus psyllid to evaluate host suitability on a spatial scale. Arthropod-Plant Interact 8:453–460

    Google Scholar 

  • Mazzoni V, Prešern J, Lucchi A, Virant-Doberlet M (2009) Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull Entomol Res 99:401–413

    PubMed  Google Scholar 

  • Mazzoni V, Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M (2014) Active space and the role of amplitude in plant-borne vibrational communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, New York, pp 125–145

    Google Scholar 

  • Mazzoni V, Polajnar J, Baldini M, Rossi Stacconi MV, Anfora G, Guidetti R, Maistrello L (2017) Use of substrate-borne vibrational signals to attract the brown marmorated stink bug, Halyomorpha halys. J Pest Sci 90(4):1219–1229

    Google Scholar 

  • McNett GD, Luan LH, Cocroft RB (2010) Wind-induced noise alters signaler and receiver behaviour in vibrational communication. Behav Ecol Sociobiol 64:2043–2051

    Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Google Scholar 

  • Mortimer B (2017) Biotremology: do physical constraints limit the propagation of vibrational information? Anim Behav 130:165–174

    Google Scholar 

  • Mullen ER, Rutschman P, Pegram N, Patt JM, Adamczyk JJ, Johanson 3rd (2016) Laser system for identification, tracking, and control of flying insects. Opt Express 24:11828–11838

    CAS  PubMed  Google Scholar 

  • Nava DE, Gomez-Torres ML, Rodrigues MD, Bento JMS, Haddad ML, Parra JRP (2010) The effect of host, geographic origin and gender on the thermal requirements of Diaphorina citri (Hemiptera: Psyllidae). Environ Entomol 39:678–684

    PubMed  Google Scholar 

  • Nieri R, Mazzoni V, Gordon SD, Krugner R (2017) Mating behavior and vibrational mimicry in the glassy-winged sharpshooter, Homalodisca vitripennis. J Pest Sci 90(3):887–899

    Google Scholar 

  • Njoroge AW, Affognon H, Mutungi C, Rohde B, Richter U, Hensel O, Mankin RW (2016) Frequency and time pattern differences in acoustic signals produced by Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) and Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) in stored maize. J Stored Prod Res 69:31–40

    Google Scholar 

  • Ossiannilsson F (1950) Sound production in psyllids (Hem. Hom). Opusc Entomol 15:202

    Google Scholar 

  • Paris TM, Croxton SD, Stansly PA, Allan SA (2015) Temporal response and attraction of Diaphorina citri to visual stimuli. Entomol Exp Appl 155:137–147

    Google Scholar 

  • Paris TM, Allan SA, Udell BJ, Stansly PA (2017) Wavelength and polarization affect phototaxis of the Asian citrus psyllid. Insects 8:88. https://doi.org/10.3390/insects8030088

    Article  PubMed Central  Google Scholar 

  • Patt JM, Sétamou M (2010) Responses of the Asian citrus psyllid to volatiles emitted by flushing shoots of its rutaceous host plants. Environ Entomol 39:618–624

    CAS  PubMed  Google Scholar 

  • Polajnar J, Eriksson A, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2016) Manipulating behaviour with substrate-borne vibrations-potential for insect pest control. Pest Manag Sci 71:15–23

    Google Scholar 

  • Potamitis I, Rigakis I (2015) Novel noise-robust optoacoustic sensors to identify insects through wingbeats. IEEE Sensors J 15:4621–4631

    CAS  Google Scholar 

  • Pregmon EA, Lujo S, Norton K, Hartman E, Rohde B, Mankin RW (2016) A “walker” tool to place Diaphorina citri (Hemiptera: Liviidae) adults at predetermined sites for bioassays of behavior in citrus (Sapindales: Rutaceae) trees. Fla Entomol 99:308–310

    Google Scholar 

  • Rohde B, Paris TM, Heatherington EM, Hall DG, Mankin RW (2013) Responses of Diaphorina citri (Hemiptera: Psyllidae) to conspecific vibrational signals and synthetic mimics. Ann Entomol Soc Am 106:392–399

    Google Scholar 

  • Sétamou M, Flores D, French JV, Hall DG (2008) Dispersion patterns and sampling plans for Diaphorina citri (Hemiptera: Psyllidae) in citrus. J Econ Entomol 101:1478–1487

    PubMed  Google Scholar 

  • Sétamou MA, Sanchez A, Patt JM, Nelson SD, Jifon J, Louzada ES (2011) Diurnal patterns of flight activity and effects of light on host finding behavior of the Asian citrus psyllid. J Insect Behav 25:264–276

    Google Scholar 

  • Sétamou M, Simpson CR, Alabi OJ, Nelson SD, Telagamsetty S, Jifon JL (2016) Quality matters: influences of citrus flush physicochemical characteristics on population dynamics of the Asian citrus psyllid (Hemiptera: Liviidae). PLoS One 11:e0168997. https://doi.org/10.1371/journal.pone.0168997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons JA, Simmons AM (2011) Bats and frogs and animals in between: evidence for a common central timing mechanism to extract periodicity pitch. J Comp Physiol A 197:585–594

    Google Scholar 

  • Simões PM, Ingham RA, Gibson G, Russell IJ (2016) A role for acoustic distortion in novel rapid frequency modulation behaviour in free-flying male mosquitoes. J Exp Biol 219:2039–2047

    PubMed  Google Scholar 

  • Stockton DG, Pescitelli LE, Martini X, Stelinski LL (2017a) Female mate preference in an invasive phytopathogen vector: how learning may influence mate choice and fecundity in Diaphorina citri. Entomol Exp Appl 164:16–26

    Google Scholar 

  • Stockton DG, Martini X, Stelinski LL (2017b) Male psyllids differentially learn in the context of copulation. Insects 8:16. https://doi.org/10.3390/insects8010016

    Article  PubMed Central  Google Scholar 

  • Sule H, Muhamad R, Omar D (2012) Response of Diaphorina citri Kuwayama (Hemiptera; Psyllidae) to volatiles emitted from leaves of two rutaceous plants. J Agric Sci 4:152–159

    Google Scholar 

  • Taylor KL (1985) A possible stridulatory organ in some Psylloidea (Homoptera). Aust Entomol 24:77–80

    Google Scholar 

  • Tishechkin DY (1989) Acoustic communication in the psyllids (Homoptera, Psyllinea) from Moscow district. Moscow University Bulletin: Moscow, Russia. Series 16. Biology 4:20–24

    Google Scholar 

  • Tishechkin DY (2006) Vibratory communication in Psylloidea (Hemiptera). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication. CRC Press, New York, NY, pp 357–373

    Google Scholar 

  • Tishechkin DY (2007) Background noises in vibratory communication channels of Homoptera (Cicadinea and Psyllinea). Russ Entomol J 16:39–46

    Google Scholar 

  • Udell BJ, Monzo C, Paris TM, Allan SA, Stansly PA (2017) Influence of limiting and regulating factors on populations of Asian citrus psyllid and the risk of insect and disease outbreaks. Ann Appl Biol 171:70–88

    Google Scholar 

  • Virant-Doberlet M (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Google Scholar 

  • Virant-Doberlet M, Čokl A, Zorović M (2006) Use of substrate vibrations for orientation: from behaviour to physiology. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication. CRC Press, New York, NY, pp 81–97

    Google Scholar 

  • Wenninger EJ, Hall DG (2007) Daily timing and age at reproductive maturity in Diaphorina citri (Hemiptera: Psyllidae). Fla Entomol 90:715–722

    Google Scholar 

  • Wenninger EJ, Hall DG, Mankin RW (2009) Vibrational communication between the sexes in Diaphorina citri (Hemiptera: Psyllidae). Ann Entomol Soc Am 102:547–555

    Google Scholar 

  • Zagvazdina NY, Paris TM, Udell BJ, Stanislauskas M, McNeill S, Allan SA, Mankin RW (2015) Effects of atmospheric pressure trends on calling, mate-seeking, and phototaxis of Diaphorina citri (Hemiptera: Liviidae). Ann Entomol Soc Am 108:762–770

    Google Scholar 

Download references

Acknowledgments

Funds for this research were provided by the Florida Citrus Research and Development Fund. Mention of a trademark or proprietary product is solely for the purpose of providing specific information and does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable. The USDA is an equal opportunity employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Mankin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mankin, R.W. (2019). Vibrational Trapping and Interference with Mating of Diaphorina citri . In: Hill, P., Lakes-Harlan, R., Mazzoni, V., Narins, P., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Studying Vibrational Behavior . Animal Signals and Communication, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-22293-2_20

Download citation

Publish with us

Policies and ethics