Skip to main content

Mating Disruption by Vibrational Signals: Applications for Management of the Glassy-Winged Sharpshooter

  • Chapter
  • First Online:
Biotremology: Studying Vibrational Behavior

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 6))

Abstract

The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is a generalist insect and a major pest of grapevines. GWSS is a vector of the bacterium Xylella fastidiosa, causal agent of Pierce’s disease that can lead to grapevine death within few years after infection. This chapter discusses the problem and current GWSS control methods. Then, the focus changes to efforts in developing a novel control method that uses synthetic vibrational signals to disrupt mating and, thus, population growth. A step-by-step method for creating effective playback signals is described and discussed. The method was termed “D.I.E.,” which stands for Describe, Identify, and Execute. The first step is to describe the basic biology of the insect pest with emphasis on communication behaviors. From there, one can begin identifying which candidate signals disrupt communication. Finally, execution tests are conducted to determine which signals effectively disrupt mating in laboratory, and more importantly, in the field. While there are still steps needed for large-scale implementation in the field, the basic biological questions related to whether synthetic vibrational signals can disrupt mating are answered affirmatively. The next direction will be to develop a mechanism of signal transmission across large areas. In addition, season long field trials are needed, taking into consideration natural insect movements into and out of treated areas.

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida RPP, Purcell AH (2003a) Homalodisca coagulata (Hemiptera: Cicadellidae) transmission of Xylella fastidiosa to almond. Plant Dis 87:1255–1259

    Article  CAS  PubMed  Google Scholar 

  • Almeida RPP, Purcell AH (2003b) Transmission of Xylella fastidiosa to grapevines by Homalodisca coagulata (Hemiptera: Cicadellidae). J Econ Entomol 96:264–271

    Article  PubMed  Google Scholar 

  • Amanifar N, Taghavi M, Izadpanah K, Babaei G (2014) Isolation and pathogenicity of Xylella fastidiosa from grapevine and almond in Iran. Phytopathol Mediterr 53:318–327

    CAS  Google Scholar 

  • Bextine B, Lampe D, Lauzon C, Jackson B, Miller TA (2005) Establishment of a genetically marked insect-derived symbiont in multiple host plants. Curr Microbiol 50:1–7

    Article  CAS  PubMed  Google Scholar 

  • Blackmer JL, Hagler JR, Simmons GS, Cañas LA (2006) Comparative dispersal of Homalodisca coagulata and Homalodisca liturata (Homoptera: Cicadellidae). Environ Entomol 33:88–99

    Article  Google Scholar 

  • Blua MJ, Morgan DWJ (2003) Dispersion of Homalodisca coagulata (Hemiptera: Cicadellidae), a vector of Xylella fastidiosa, into vineyards in southern California. J Econ Entomol 96:1369–1374

    Article  CAS  PubMed  Google Scholar 

  • Blua MJ, Phillips PA, Redak RA (1999) A new sharpshooter threatens both crops and ornamentals. Calif Agric 53:22–25

    Article  Google Scholar 

  • Boyd EA, Hoddle MS (2007) Host specificity testing of Gonatocerus spp. egg-parasitoids used in a classical biological control program against Homalodisca vitripennis: a retrospective analysis for non-target impacts in southern California. Biol Control 43:56–70

    Article  Google Scholar 

  • Cariddi C, Saponari M, Boscia D, De Stratis A, Loconsole G, Nigro F, Porcelli F, Potere O, Martelli GP (2014) Isolation of a Xylella fastidiosa strain infecting olive and oleander in Apulia. Italy J Plant Pathol 96:425–429

    Google Scholar 

  • CDFA (2003) County agricultural commissioner’s data, calendar year 2002. California Department of Food and Agriculture, Sacramento, CA

    Google Scholar 

  • CDFA (2006) County agricultural commissioner’s data, calendar year 2005. California Department of Food and Agriculture, Sacramento, CA

    Google Scholar 

  • CDFA (2016) California Department of Agriculture, Pierce’s disease control program. Annual report to the legislature. www.cdfa.ca.gov

  • Chang CJ, Garnier M, Zreik L, Rossetti V, Bové JM (1993) Culture and serological detection of Xylella fastidiosa, the xylem-limited bacterium associated with citrus variegated chlorosis disease. In: Moreno LWTP, da Graça JV (eds) Proceedings 12th Conference International Organization Citrus Virologist, New Delhi. University of California, Riverside, CA, pp 294–300

    Google Scholar 

  • Chen WL, Leopold RA, Morgan DJW, Harris MO (2006) Development and reproduction of the egg parasitoid, Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae), as a function of temperature. Environ Entomol 35:1178–1187

    Article  Google Scholar 

  • Chen J, Xie G, Han S, Chertkov O, Sims D, Civerolo EL (2010) Whole genome sequences of two Xylella fastidiosa strains (M12 and M23) causing almond leaf scorch disease in California. J Bacteriol 192:4534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa HS, Raetz E, Pinckard TR, Gispert C, Hernandez-Martinez R, Dumenyo CK, Cooksey DA (2004) Plant hosts of Xylella fastidiosa in and near southern California vineyards. Plant Dis 88:1255–1261

    Article  CAS  PubMed  Google Scholar 

  • Damsteegt VD, Brlansky RH, Phillips PA, Roy A (2006) Transmission of Xylella fastidiosa, causal agent of citrus variegated chlorosis, by the glassy-winged sharpshooter, Homalodisca coagulata. Plant Dis 90:567–570

    Article  CAS  PubMed  Google Scholar 

  • Davis MJ, Purcell AH, Thompson SV (1978) Pierce’s disease of grapevines: isolation of the causal bacterium. Science 199:75–77

    Article  CAS  PubMed  Google Scholar 

  • Davis MJ, Thompson SV, Purcell AH (1980) Etiological role of the xylem-limited bacterium causing Pierce’s disease in almond leaf scorch. Phytopathology 70:472–475

    Article  Google Scholar 

  • Davis MJ, French WJ, Schaad NW (1981) Axenic culture of the bacteria associated with phony disease of peach and plum leaf scald. Curr Microbiol 6:309–314

    Article  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V (2012) Exploitation of insect vibrational signals reveals a new method of pest management. PLoS One 7:e32954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freitag JH (1951) Host range of Pierce’s disease virus of grapes as determined by insect transmission. Phytopathology 41:920–934

    Google Scholar 

  • Freitag JH, Frazier NW (1954) Natural infectivity of leafhopper vectors of Pierce’s disease virus of grape in California. Phytopathology 44:7–11

    Google Scholar 

  • Goheen AC, Nyland G, Lowe NK (1973) Association of a rickettsia like organism with Pierce’s disease of grapevines and alfalfa dwarf and heat therapy of the disease grapevines. Phytopathology 63:341–345

    Article  Google Scholar 

  • Goodwin P, Purcell AH (1992) Pierce’s disease. In: Pearson RC, Goheen AC (eds). Grape pest management (2nd edn). Division of Agriculture and Natural Resources, University of California, Oakland, CA, pp 76–84

    Google Scholar 

  • Goolsby J, Bextine B, Skevington J (2006) Exploration for biological control agents in the native range of the glassy-winged sharpshooter. In: Esser T, Tariq MA, Medeiros R, Mochel M, Veling S (eds) Proceedings, 2006 Pierce’s Disease Research Symposium. California Department of Food and Agriculture, 27–29 November 2006, San Diego, CA. Copeland Printing, Sacramento, CA, pp 67–69

    Google Scholar 

  • Gordon SD, Sandoval N, Mazzoni V, Krugner R (2017) Mating interference of glassy-winged sharpshooters, Homalodisca vitripennis. Entomol Exp Appl 164:27–34

    Article  Google Scholar 

  • Grafton-Cardwell EE, Gu P (2003) Conserving vedalia beetle, Rodolia cardinalis (Mulsant) (Coleoptera: Coccinellidae), in citrus: a continuing challenge as new insecticides gain registration. J Econ Entomol 96:1388–1398

    Article  CAS  PubMed  Google Scholar 

  • Hewitt WB, Frazier NW, Freitag JH, Winkler AJ (1949) Pierce’s disease investigations. Hilgardia 19:207–264

    Article  Google Scholar 

  • Hewitt WB, Houston BR, Frazier NW, Freitag JH (1956) Leafhopper transmission of the virus causing Pierce’s disease of grape and dwarf of alfalfa. Phytopathology 36:117–128

    Google Scholar 

  • Hix RL, Toscano N, Gispert C (2003) Area-wide management of the glassy-winged sharpshooter in the Temecula and Coachella Valleys. In: Tariq MA, Oswalt S, Blincoe P, Spencer R, Houser L, Ba A, Esser T (eds) Proceedings, 2003 Pierce’s Disease Research Symposium. California Department of Food and Agriculture, 8–11 December 2003, Coronado, CA. Copeland Printing, Sacramento, CA, pp 292–294

    Google Scholar 

  • Hoddle MS, Triapitsyn SV (2004) Searching for and collecting egg parasitoids of glassy-winged sharpshooter in the central and eastern USA. In: Tariq MA, Oswalt S, Blincoe P, Ba A, Lorick T, Esser T (eds) Proceedings, 2004 Pierce’s Disease Research Symposium. California Department of Food and Agriculture, 7–10 December 2004, Coronado, CA. Copeland Printing, Sacramento, CA, pp 339–341

    Google Scholar 

  • Hoddle MS, Triapitsyn SV, Morgan DJW (2003) Distribution and plant association records for Homalodisca coagulata (Hemiptera: Cicadellidae) in Florida. Fla Entomol 83:89–91

    Article  Google Scholar 

  • Hopkins DL, Purcell AH (2002) Xylella fastidiosa: Cause of Pierce’s disease of grapevine and other emergent diseases. Plant Dis 86:1056–1066

    Article  CAS  PubMed  Google Scholar 

  • Katsar CS, Hunter WB, Sinisterra XH (2007) Phytoreovirus-like sequences isolated from salivary glands of the glassy-winged sharpshooter Homalodisca vitripennis (Hemiptera: Cicadellidae). Fla Entomol 90:196–203

    Article  CAS  Google Scholar 

  • Krugner R (2010) Differential reproductive maturity between geographically separated populations of Homalodisca vitripennis (Hemiptera: Cicadellidae) in California. Crop Prot 29:1521–1528

    Article  Google Scholar 

  • Krugner R, Gordon SD (2018) Mating disruption of Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) by playback of vibrational signals in vineyard trellis. Pest Manag Sci 74:2013–2019

    Article  CAS  Google Scholar 

  • Krugner R, Groves RL, Johnson MW, Flores AP, Hagler JR, Morse JG (2009) Seasonal population dynamics of Homalodisca vitripennis (Hemiptera: Cicadellidae) in sweet orange trees maintained under continuous deficit irrigation. J Econ Entomol 102:960–973

    Article  PubMed  Google Scholar 

  • Krugner R, Hagler JR, Groves RL, Sisterson MS, Morse JG, Johnson MW (2012) Plant water stress effects on the net dispersal rate of the insect vector Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) and movement of its egg parasitoid, Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae). Environ Entomol 41:1279–1289

    Article  PubMed  Google Scholar 

  • Lauziere I, Elzen G (2007) Effect of formulated insecticides on Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) and its parasitoid Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae). J Entomol Sci 42:11–19

    Article  CAS  Google Scholar 

  • Leu LS, Su CC (1993) Isolation, cultivation, and pathogenicity of Xylella fastidiosa, the causal bacterium of pear leaf scorch disease in Taiwan. Plant Dis 77:642–646

    Article  Google Scholar 

  • Mankin RW, Rohde BB, McNeill SA, Paris TM, Zagvazdina NI, Greenfeder S (2013) Diaphorina citri (Hemiptera: Liviidae) responds to microcontroller-buzzer communication signals of potential use in vibration traps. Fla Entomol 96:1546–1555

    Article  Google Scholar 

  • Mazzoni V, Gordon SD, Nieri R, Krugner R (2017) Design of a candidate vibrational signal for mating disruption against the glassy-winged sharpshooter, Homalodisca vitripennis. Pest Manag Sci 73:2328–2333

    Article  CAS  PubMed  Google Scholar 

  • McNett GD, Luan LH, Cocroft RB (2010) Wind-induced noise alters signaler and receiver behavior in vibrational communication. Behav Ecol Sociobiol 64:2043–2051

    Article  Google Scholar 

  • Miller JR, Gut LJ (2015) Mating disruption for the 21st century: matching technology with mechanism. Environ Entomol 44:427–453

    Article  CAS  PubMed  Google Scholar 

  • Mircetich SM, Lowe SK, Moller WJ, Nyland G (1976) Etiology of almond leaf scorch and transmission of the causal agent. Phytopathology 66:17–24

    Article  Google Scholar 

  • Morse JG (2006) Seasonal population dynamics of glassy-winged sharpshooter egg parasitoids: variability across sites and host plants. In: Esser T, Tariq MA, Medeiros R, Mochel M, Veling S (eds) Proceedings, 2006 Pierce’s Disease Research Symposium. California Department of Food and Agriculture, 27–29 November 2006, San Diego, CA. Copeland Printing, Sacramento, CA, pp 92–94

    Google Scholar 

  • Naguib M (2013) Living in a noisy world: Indirect effects of noise on animal communication. Behaviour 150:1069–1084

    Article  Google Scholar 

  • Nieri R, Mazzoni V, Gordon SD, Krugner R (2017) Mating behavior and vibrational mimicry in the glassy-winged sharpshooter, Homalodisca vitripennis. J Pest Sci 90:887–899

    Article  Google Scholar 

  • Oliver JE, Cobine PA, De La Fuente L (2015) Xylella fastidiosa isolates from both subsp. multiplex and fastidiosa cause disease on southern highbush blueberry (Vaccinium sp.) under greenhouse conditions. Phytopathology 105:855–862

    Article  CAS  PubMed  Google Scholar 

  • Park YL, Perring TM, Farrar CA, Gispert C (2006) Spatial and temporal distribution of two sympatric Homalodisca spp. (Hemiptera: Cicadellidae): implications for area wide pest management. Agric Ecosyst Environ 113:168–174

    Article  Google Scholar 

  • Perring TM, Farrar CA, Blua MJ (2001) Proximity to citrus influences Pierce’s disease in Temecula Valley vineyards. Calif Agric 55:13–18

    Article  Google Scholar 

  • Pilkington LJ, Hoddle MS (2006) Use of life statistics and degree-day values to predict the invasion success of Gonatocerus ashmeadi (Hymenoptera: Mymaridae), an egg parasitoid of Homalodisca coagulata (Hemiptera: Cicadellidae), in California. Biol Control 37:276–283

    Article  Google Scholar 

  • Polajnar J, Eriksson A, Virant-Doberlet M, Mazzoni V (2016) Mating disruption of a grapevine pest using mechanical vibrations: from laboratory to the field. J Pest Sci 89:909–992

    Article  Google Scholar 

  • Purcell AH, Saunders SR (1999) Glassy-winged sharpshooter expected to increase plant disease. Calif Agric 53:26–27

    Article  Google Scholar 

  • Raju BC, Nomé SF, Docampo DM, Goheen AC, Nyland G, Lowe SK (1980) Alternative hosts of Pierce’s disease of grapevines that occur adjacent to grape growing areas in California. Am J Enol Vitic 31:144–148

    Google Scholar 

  • Raju BC, Wells JM, Nyland G, Brlansky RH, Lowe SK (1982) Plum leaf scald: isolation, culture, and pathogenicity of the causal agent. Phytopathology 72:1460–1466

    Article  Google Scholar 

  • Raju BC, Goheen AC, Frazier NW (1983) Occurrence of Pierce’s disease bacteria in plants and vectors in California. Phytopathology 73:1309–1313

    Article  Google Scholar 

  • Redak R, White B, Byrne F (2016) Management of insecticide resistance in glassy-winged sharpshooter populations using toxicological, biochemical, and genomic tools. In: Esser T (ed) Proceedings of the 2016 Pierce’s Disease Research Symposium. Time Printing, Sacramento, CA, pp 230–236

    Google Scholar 

  • Riaz S, Tenscher AC, Graziani R, Krivanek AF, Ramming DW, Walker MA (2009) Using marker-assisted selection to breed Pierce’s disease-resistant grapes. Am J Enol Viticult 60:199–207

    Google Scholar 

  • Sanderlin RS, Heyderich-Alger KI (2000) Evidence that Xylella fastidiosa can cause leaf scorch disease of pecan. Plant Dis 84:1282–1286

    Article  CAS  PubMed  Google Scholar 

  • Scally M, Schuenzel EL, Stouthamer R, Nunney L (2005) Multilocus sequence type system for the plant pathogen Xylella fastidiosa and relative contributions of recombination and point mutation to clonal diversity. Appl Environ Microbiol 71:8491–8499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sisterson MS (2008) Egg load dynamics of Homalodisca vitripennis. Environ Entomol 37:1200–1207

    Article  PubMed  Google Scholar 

  • Sisterson MS (2012) Host selection by a phytophagous insect: the interplay between feeding, egg maturation, egg load, and oviposition. Arthropod-Plant Interact 6:351–360

    Article  Google Scholar 

  • Sisterson MS, Stenger DC (2016) Disentangling effects of vector birth rate, mortality rate, and abundance on spread of a plant pathogen. J Econ Entomol 109:487–501

    Article  PubMed  Google Scholar 

  • Sorensen JT, Gill RJ (1996) A range extension of Homalodisca coagulata (Say) (Hemiptera: Clypeorrhyncha: Cicadellidae) to southern California. Pan-Pac Entomol 72:160–161

    Google Scholar 

  • Su CC, Chang CJ, Chang CM, Shih HT, Tzeng KC, Jan FJ, Kao CW, Deng WL (2013) Pierce’s disease of grapevines in Taiwan: isolation, cultivation and pathogenicity of Xylella fastidiosa. J Phytopathol 161:389–396

    Article  CAS  Google Scholar 

  • Triapitsyn SV, Phillips PA (2000) First record of Gonatocerus triguttatus (Hymenoptera: Mymaridae) from eggs of Homalodisca coagulata (Homoptera: Cicadellidae) with notes on the distribution of the host. Fla Entomol 83:200–203

    Article  Google Scholar 

  • Triapitsyn SV, Mizzell RF III, Bossart JL, Carlton CE (1998) Egg parasitoids of Homalodisca coagulata (Homoptera: Cicadellidae). Fla Entomol 8:241–243

    Article  Google Scholar 

  • Triapitsyn SV, Morgan DJW, Hoddle MS, Berezovskiy VV (2003) Observations on the biology of Gonatocerus fasciatus Girault (Hymenoptera: Mymaridae), egg parasitoid of Homalodisca coagulata (Say) and Oncometopia orbona (Fabricius) (Hemiptera: Clypeorrhyncha: Cicadellidae). Pan-Pac Entomol 79:75–76

    Google Scholar 

  • Tubajika KM, Civerolo EL, Ciomperlik MA, Luvisi DA, Hashim JM (2004) Analysis of the spatial patterns of Pierce’s disease incidence in the lower San Joaquin Valley in California. Phytopathology 94:1136–1144

    Article  CAS  PubMed  Google Scholar 

  • Turner WF (1959) Insect vectors of phony peach disease. Science 109:87–88

    Article  Google Scholar 

  • Turner WF, Pollard PN (1959) Life histories and behavior of five insect vectors of phony peach disease. US Dep Agric Tech Bull 1188:1–28

    Google Scholar 

  • USDA-NASS (2017) California Grape Acreage Report. United States Department of Agriculture, National Agricultural Statistics Service, Pacific Regional Field Office. www.nass.usda.gov

  • Van Sluys MA, De Oliveira MC, Monteiro-Vitorello CB, Miyaki CY, Furlan LR, Camargo LEA, de Silva ACR, Moon DH, Takita MA, Lemos EGM, Machado MA, Ferro MIT, da Silva FR, Goldman MHS, Goldman GH, Lemos MVF, El-Dorry H, Tsai SM, Carrier H, Carraro DM, de Oliveira RC, Nunes LR, Siqueira WJ, Coutinho LL, Kimura ET, Ferro ES, Harakava R, Kuramae EE, Marino CL, Giglioti E, Abreu IL, Alves LMC, do Amaral AM, Baia GS, Blanco SR, Brito MS, Cannavan FS, Celestino AV, da Cunha AF, Fenille RC, Ferro JA, Formighieri EF, Kishi LT, Leoni SG, Oliveira AR, Rosa VE Jr, Sassaki FT, Sena JAD, de Souza AA, Truffi D, Tsukumo F, Yanai GM, Zaros LG, Civerolo EL, Simpson AJG, Almeida NF Jr, Setubal JC, Katajima JP (2003) Comparative analyses of the complete genome sequences of Pierce’s disease and citrus variegated chlorosis strains of Xylella fastidiosa. J Bacteriol 185:1018–1026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wells JM, Raju BC, Nyland G (1983) Isolation, culture, and pathogenicity of the bacterium causing phony disease of peach. Phytopathology 73:859–862

    Article  Google Scholar 

  • Wendel L, Ciomperlik M, Bartels D, Luvisi D, Elms D (2002) The area-wide pest management of glassy-winged sharpshooter in Kern County. In: Tariq MA, Oswalt S, Blincoe P, Esser T (eds) Proceedings, 2002 Pierce’s Disease Research Symposium. California Department of Food and Agriculture, 15–18 December 2002, Coronado, CA. Copeland Printing, Sacramento, CA, pp 302–307

    Google Scholar 

  • Wu D, Daugherty SC, van Aken SE, Pai GH, Watkins KL, Khouri H, Tallon LJ, Zaborsky JM, Dunbar HE, Tran PL, Moran NA, Eisen JA (2006) Metabolic complementarity genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol 4:1079–1092

    Article  CAS  Google Scholar 

  • Yuan X, Morano L, Bromley R, Spring-Pearson S, Stouthamer R, Nunney L (2010) Multilocus sequence typing of Xylella fastidiosa causing Pierce’s disease and oleander leaf scorch in the United States. Phytopathology 100:601–611

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Krugner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gordon, S.D., Krugner, R. (2019). Mating Disruption by Vibrational Signals: Applications for Management of the Glassy-Winged Sharpshooter. In: Hill, P., Lakes-Harlan, R., Mazzoni, V., Narins, P., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Studying Vibrational Behavior . Animal Signals and Communication, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-22293-2_18

Download citation

Publish with us

Policies and ethics