Skip to main content

Mating Disruption by Vibrational Signals: State of the Field and Perspectives

  • Chapter
  • First Online:
Biotremology: Studying Vibrational Behavior

Abstract

Until a few years ago, the concept of mating disruption had been exclusively associated with the use of pheromones to reduce population density of insect pests. Since the early 2000s, a novel approach has been proposed to the scientific community: vibrational mating disruption (VMD). The novelty is the use of disturbance vibrations to disrupt the mating behavior of insect pests that communicate by means of substrate-borne vibrations. This research falls within the new field of biotremology and it brought the VMD from a theoretical concept to practical open field experimentation: in 2017, VMD was applied in an organic vineyard in Northern Italy to control leafhopper pests’ population density. This achievement gave us the opportunity to report the state of the field for the method, to discuss the ongoing research and to make a comparison between pheromone mating disruption (PMD) and VMD. In this chapter, we review the salient moments that led to the field application of VMD. Then, we discuss the VMD characteristics and we provide a benchmark, using as reference the traditional PMD to discuss similarities and differences. Furthermore, we analyze the advantages and disadvantages of applying VMD to commercial crops. We are convinced that the first vibrational vineyard is a starting point and that biotremology will provide many innovative possibilities for farmers to control pests in the future. We also think that the introduction of electronic devices in the vineyard could be a trailblazer for the diffusion of smart technology in viticulture, thus improving its general management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anfora G, Baldessari M, De Cristofaro A, Germinara G, Ioriatti C, Reggiori F, Vitagliano S, Angeli G (2008) Control of Lobesia botrana (Lepidoptera: Tortricidae) by biodegradable Ecodian sex pheromone dispensers. J Econ Entomol 101:444–450

    CAS  PubMed  Google Scholar 

  • Aqeel-Ur-Rehman, Abbasi AZ, Islam N, Shaikh ZA (2014) A review of wireless sensors and networks’ applications in agriculture. Comput Stand Interfaces 36:263–270

    Google Scholar 

  • Baker T, Heath J (2005) Pheromones: function and use in insect control. In: Gilbert L, Iatrou K, Gill S (eds) Comprehensive molecular insect science, vol 6. Elsevier, Amsterdam, pp 407–459

    Google Scholar 

  • Baker T, Roelofs W (1981) Initiation and termination of oriental fruit moth male response to pheromone concentrations in the field. Environ Entomol 10:211–218

    Google Scholar 

  • Barclay HJ, Judd GJR (1995) Models for mating disruption by means of pheromone for insect pest control. Res Popul Ecol (Kyoto) 37:239–247

    Google Scholar 

  • Bartell L (1982) Mechanisms of communication disruption by pheromone in the control of Lepidoptera: a review. Physiol Entomol 7:353–364

    CAS  Google Scholar 

  • Bengtsson BO, Löfstedt C (2007) Direct and indirect selection in moth pheromone evolution: population genetical simulations of asymmetric sexual interactions. Biol J Linn Soc 90(1):117–123. https://doi.org/10.1111/j.1095-8312.2007.00715.x

    Article  Google Scholar 

  • Bengtsson M, Karg G, Kirsch P, Löfqvist J, Sauer A, Witzgall P (1994) Mating disruption of pea moth Cydia nigricana F.(Lepidoptera: Tortricidae) by a repellent blend of sex pheromone and attraction inhibitors. J Chem Ecol 20:871–887

    CAS  PubMed  Google Scholar 

  • Böll S, Herrmann JV (2004) A long-term study on the population dynamics of the grape leafhopper (Empoasca vitis) and antagonistic mymarid species. J Pest Sci 77:33–42

    Google Scholar 

  • Bosco D, Alma A, Arzone A (1997) Studies on population dynamics and spatial distribution of leafhoppers in vineyards (Homoptera: Cicadellidae). Ann Appl Biol 130(1):1–11

    Google Scholar 

  • Brunner J, Welter S, Calkins C, Hilton R, Beer E, Dunley J, Unruh T, Knight A, Van Steenwyk R, Van Buskirk P (2002) Mating disruption of codling moth: a perspective from the Western United States. IOBC wprs Bull 25:1–11

    Google Scholar 

  • Canale A, Benelli G, Lanzo F, Giannotti P, Mazzoni V, Lucchi A (2013) The courtship song of fanning males in the fruit fly parasitoid Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae). Bull Entomol Res 103:303–309

    CAS  PubMed  Google Scholar 

  • Cardé R (1990) Principles of mating disruption. In: Ridgway R, Silverstein R, Inscoe M (eds) Behavior-modifying chemicals for insect management. Marcel Dekker, New York, pp 47–71

    Google Scholar 

  • Cardé RT (2007) Using pheromones to disrupt mating of moth pests. In: Kogan M, Jepson P (eds) Perspectives in ecological theory and integrated pest management. Cambridge University Press, Cambridge, pp 122–169

    Google Scholar 

  • Cardé RT, Baker T (1984) Sexual communication with pheromones. In: Bell W, Cardé R (eds) Chemical ecology of insects. Springer, Boston, MA, pp 355–383

    Google Scholar 

  • Cardé RT, Haynes KF (2004) Structure of the pheromone communication channel in moths. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 283–332

    Google Scholar 

  • Cardé RT, Minks AK (1995) Control of moth pests by mating disruption: successes and constraints. Annu Rev Entomol 40:559–585

    Google Scholar 

  • Charmillot P, Pasquier D (2000) Lutte par confusion contre le vers de la grappe: succès et problèmes rencontrés. IOBC wprs Bull 23:145–147

    Google Scholar 

  • Chuche J, Thiéry D (2014) Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: a review. Agron Sustain Dev 34:381–403. https://doi.org/10.1007/s13593-014-0208-7

    Article  Google Scholar 

  • Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50

    PubMed  Google Scholar 

  • Čokl A, Virant-Doberlet M, McDowell A (1999) Vibrational directionality in the southern green stink bug, Nezara viridula (L.), is mediated by female song. Anim Behav 58:1277–1283

    PubMed  Google Scholar 

  • Decante D, van Helden M (2006) Population ecology of Empoasca vitis (Göthe) and Scaphoideus titanus (Ball) in Bordeaux vineyards: Influence of migration and landscape. Crop Prot 25:696–704

    Google Scholar 

  • Derlink M, Pavlovčič P, Stewart AJA, Virant-Doberlet M (2014) Mate recognition in duetting species: the role of male and female vibrational signals. Anim Behav 90:181–193

    Google Scholar 

  • Derlink M, Abt I, Mabon R, Julian C, Virant-doberlet M (2018) Mating behaviour of Psammotettix alienus (Hemiptera: Cicadellidae). Insect Sci 25(1):148–160

    PubMed  Google Scholar 

  • Elkington J, Schal C, Onot T, Cardé R (1987) Pheromone puff trajectory and upwind flight of male gypsy moths in a forest. Physiol Entomol 12:399–406

    Google Scholar 

  • El-Sayed A, Unelius R, Liblikas I, Löfqvist J, Bengtsson M, Witzgall P (1998) Effect of codlemone isomers on codling moth (Lepidoptera: Tortricidae) male attraction. Environ Entomol 27:1250–1254

    CAS  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Inter-plant vibrational communication in a leafhopper insect. PLoS One 6:e19692. https://doi.org/10.1371/journal.pone.0019692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V (2012) Exploitation of insect vibrational signals reveals a new method of pest management. PLoS One 7:e32954. https://doi.org/10.1371/journal.pone.0032954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evenden ML, Judd GJR, Borden JH (1999) Mating disruption of two sympatric, orchard inhabiting tortricids, Chroistoneura rosaceana and Pandemis limiata (Lepidoptera: Tortricidae), with pheromone components of both species’ blends. J Econ Entomol 92:330–390

    Google Scholar 

  • Fabre JH (1966) The insect world of Jean H. Fabre/in the translation of Alexander Teixeira de Mattos. New York, Dodd, Mead

    Google Scholar 

  • Gaston LK, Shorey HH, Saario CA (1967) Insect population control by the use of sex pheromones to inhibit orientation between the sexes. Nature 213:1155–1155

    CAS  Google Scholar 

  • Gemeno C, Baldo G, Nieri R, Valls J, Alomar O, Mazzoni V (2015) Substrate-borne vibrational signals in mating communication of Macrolophus bugs. J Insect Behav 28(4):482–498

    Google Scholar 

  • Gogala M, Čokl A, Drašlar K, Blaževič A (1974) Substrate-borne sound communication in Cydnidae (Heteroptera). J Comp Physiol 94:25–31

    Google Scholar 

  • Gordon SD, Sandoval N, Mazzoni V, Krugner R (2017) Mating interference of glassy-winged sharpshooters, Homalodisca vitripennis. Entomol Exp Appl 164(1):27–34. https://doi.org/10.1111/eea.12594

    Article  Google Scholar 

  • Henry CS, Brooks SJ, Duelli P, Johnson JB, Wells MM, Mochizuki A (2013) Obligatory duetting behaviour in the Chrysoperla carnea-group of cryptic species (Neuroptera: Chrysopidae): its role in shaping evolutionary history. Biol Rev Camb Philos Soc 88:787–808

    PubMed  Google Scholar 

  • Hill PSM, Wessel A (2016) Biotremology. Curr Biol 26:R187–R191

    CAS  PubMed  Google Scholar 

  • Howse PE, Stevens IDR, Jones CO (1998) Mating disruption. In: Howse PE, Jones OT, Stevens IDR (eds) Insect pheromones and their use in pest management. Springer, Dordrecht, pp 314–344

    Google Scholar 

  • Ichikawa T, Ishii S (1974) Mating signal of the Brown planthopper, Nilaparvata lugens Stal (Homoptera: Delphacidae): vibration of the substrate. Appl Entomol Zool 9:196–198

    Google Scholar 

  • Ioriatti C, Lucchi A (2016) Semiochemical strategies for tortricid moth control in apple orchards and vineyards in Italy. J Chem Ecol 42:571–583

    CAS  PubMed  Google Scholar 

  • Ioriatti C, Bagnoli B, Lucchi A, Veronelli V (2005) Vine moths control by mating disruption in Italy: results and future prospects. Redia 87:117–128

    Google Scholar 

  • Ioriatti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 104:1125–1137

    CAS  PubMed  Google Scholar 

  • Jaffe MJ (1973) Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation. Planta (Berh) 114:143–157

    CAS  Google Scholar 

  • Johansson BG, Jones TM (2007) The role of chemical communication in mate choice. Biol Rev 82:265–289

    PubMed  Google Scholar 

  • Jones VP, Aihara-Sasaki M (2001) Demographic analysis of delayed mating in mating disruption: a case study with Cryptophelbia illepida (Lepidoptera: Tortricidae). J Econ Entomol 94:785–792

    CAS  PubMed  Google Scholar 

  • Jones V, Wiman N, Brunner J (2008) Comparison of delayed female mating on reproductive biology of codling moth and obliquebanded leafroller. Environ Entomol 37:679–685

    PubMed  Google Scholar 

  • Karg G, Sauer A (1997) Seasonal variation of pheromone concentration in mating disruption trials against European grapevine moth Lobesia botrana (Lepidoptera: Tortricidae) measured by EAG. J Chem Ecol 23:487–501

    CAS  Google Scholar 

  • Karg G, Suckling D, Bradley S (1994) Absorption and release of pheromone of Epiphyas postvittana (Lepidoptera: Tortricidae) by apple leaves. J Chem Ecol 20:1825–1841

    CAS  PubMed  Google Scholar 

  • Knight A (1996) Why so many mated female codling moths in disrupted orchards? In: Proceedings of the Washington State Horticultural Association, vol 92, pp 213–214

    Google Scholar 

  • Korinšek G, Derlink M, Virant-Doberlet M, Tuma T (2016) An autonomous system of detecting and attracting leafhopper males using species- and sex-specific substrate borne vibrational signals. Comput Electron Agric 123:29–39

    Google Scholar 

  • Kuhelj A, Virant-Doberlet M (2017) Male-male interactions and male mating success in the leafhopper Aphrodes makarovi. Ethology 123:425–433. https://doi.org/10.1111/eth.12613

    Article  Google Scholar 

  • Kuhelj A, De Groot M, Blejec A, Virant-Doberlet M (2015) The effect of timing of female vibrational reply on male signalling and searching behaviour in the leafhopper Aphrodes makarovi. PLoS One 10:1–15. https://doi.org/10.1371/journal.pone.0139020

    Article  CAS  Google Scholar 

  • Kuhelj A, de Groot M, Blejec A, Virant-Doberlet M (2016) Sender-receiver dynamics in leafhopper vibrational duetting. Anim Behav 114:139–146

    Google Scholar 

  • Leal W (2005) Pheromone reception. In: Schulz S (ed) The chemistry of pheromones and other semiochemicals II. Topics in current chemistry, vol 240. Springer, Berlin, pp 1–36

    Google Scholar 

  • Lessio F, Alma A (2004) Dispersal patterns and chromatic response of Scaphoideus titanus Ball (Homoptera: Cicadellidae), vector of the phytoplasma agent of grapevine flavescence dorée. Agric For Entomol 6:121–127

    Google Scholar 

  • Linn C, Campbell M, Roelofs W (1987) Pheromone components and active spaces: what do moths smell and where do they smell it? Science 237:650–652

    CAS  PubMed  Google Scholar 

  • Lintner JA (1882) A new principle in protection against insect attack. West NY Hortic Soc Proc 27:52–66

    Google Scholar 

  • Liu S, Li Z, Sui Y, Schaefer DA, Alele PO, Chen J, Yang X (2015) Spider foraging strategies dominate pest suppression in organic tea plantations. BioControl 60:839–847

    CAS  Google Scholar 

  • Louis F, Schirra K (2001) Mating disruption of Lobesia botrana (Lepidoptera: Tortricidae) in vineyards with very high population densities. IOBC wprs Bull 24:75–79

    Google Scholar 

  • Maixner M (2003) A sequential sampling procedure for Empoasca vitis Goethe (Homoptera: Auchenorrhyncha). IOBC wprs Bull 26(8):209–215

    Google Scholar 

  • Mankin R, Rohde B, Mcneill S (2013) Diaphorina citri (Hemiptera: Liviidae) responses to microcontroller-buzzer communication signals of potential use in vibration traps. Fla Entomol 96:1546–1555

    Google Scholar 

  • Mazzoni V, Cosci F, Lucchi A, Santini L (2001) Occurance of leafhopper (Auchenorrhyncha, Cicadellidae) in three vineyards of the Pisa district. IOBC wprs Bulletin 24(7):267–271

    Google Scholar 

  • Mazzoni V, Lucchi A, Cokl A, Presern J, Virant-Doberlet M (2009a) Disruption of the reproductive behaviour of Scaphoideus titanus by playback of vibrational signals. Entomol Exp Appl 133:174–185

    Google Scholar 

  • Mazzoni V, Presern J, Lucchi A, Virant-Doberlet M (2009b) Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull Entomol Res 99:401–413

    PubMed  Google Scholar 

  • Mazzoni V, Lucchi A, Ioriatti C, Virant-Doberlet M, Anfora G (2010) Mating behavior of Hyalesthes obsoletus (Hemiptera: Cixiidae). Ann Entomol Soc Am 103(5):813–822

    Google Scholar 

  • Mazzoni V, Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M (2014) Active space and the role of amplitude in plant-borne vibrational communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 125–145

    Google Scholar 

  • Mazzoni V, Polajnar J, Baldini M, Rossi Stacconi MV, Anfora G, Guidetti R, Maistrello L (2017) Use of substrate-borne vibrational signals to attract the Brown Marmorated Stink Bug, Halyomorpha halys. J Pest Sci 90(4):1219–1229

    Google Scholar 

  • McNeil MEA (2015) Electronic hive monitoring. Am Bee J. http://meamcneil.com/ElectronicMonitoring.pdf

  • McNett GD, Luan LH, Cocroft RB (2010) Wind-induced noise alters signaler and receiver behavior in vibrational communication. Behav Ecol Sociobiol 64:2043–2051

    Google Scholar 

  • Meikle WG, Holst N (2015) Application of continuous monitoring of honeybee colonies. Apidologie 46:10–22

    Google Scholar 

  • Meyhöfer R, Casas J (1999) Vibratory stimuli in host location by parasitic wasps. J Insect Physiol 45:967–971

    PubMed  Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Google Scholar 

  • Millar J (2007) Insect pheromones for integrated pest management: promise versus reality. Redia XC:51–55

    Google Scholar 

  • Miller JR, Gut LJ, de Lame FM, Stelinski LL (2006) Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (part i): theory. J Chem Ecol 32:2089–2114

    CAS  PubMed  Google Scholar 

  • Mitter E, Dorn S (1998) Vibrational sounding by the pupal parasitoid Pimpla (Coccygomimus) turionellae: an additional solution to the reliability – detectability problem. Biol Control 146:141–146

    Google Scholar 

  • Nieri R, Mazzoni V (2018) The reproductive strategy and the vibrational duet of the leafhopper Empoasca vitis Göthe. Insect Sci 25(5):869–882. https://doi.org/10.1111/1744-7917.12454

    Article  PubMed  Google Scholar 

  • Nieri R, Mazzoni V, Gordon SD, Krugner R (2017) Mating behavior and vibrational mimicry in the glassy-winged sharpshooter, Homalodisca vitripennis. J Pest Sci 90(3):887–899

    Google Scholar 

  • Pertot I, Caffi T, Rossi V, Mugnai L, Hoffmann C, Grando M, Gary C, Lafond D, Duso C, Thiery D, Mazzoni V, Anfora G (2017) A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot 97:70–84

    CAS  Google Scholar 

  • Polajnar J, Eriksson A, Rossi Stacconi MV, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2014) The process of pair formation mediated by substrate-borne vibrations in a small insect. Behav Process 107:68–78

    Google Scholar 

  • Polajnar J, Eriksson A, Virant-Doberlet M, Mazzoni V (2016) Mating disruption of a grapevine pest using mechanical vibrations: from laboratory to the field. J Pest Sci 89:909–921

    Google Scholar 

  • Qi L, Teng G, Hou T, Zhu B, Liu X (2010) Influence of sound wave stimulation on the growth of strawberry in sunlight greenhouse. Comput Comput Technol Agric III 317:449–454

    Google Scholar 

  • Rakitov R (2002) What are brochosomes for? An enigma of leafhoppers (Hemiptera, Cicadellidae). Denisia 4:411–432

    Google Scholar 

  • Renou M, Guerrero A (2000) Insect pheromones in olfaction research and semiochemicals-based pest control strategies. Annu Rev Entomol 45:605–630

    CAS  PubMed  Google Scholar 

  • Rothschild G (1975) Control of oriental fruit moth (Cydia molesta (Busck) (Lepidoptera, Tortricidae)) with synthetic sex pheromone. Bull Entomol Res 65:473–490

    CAS  Google Scholar 

  • Sanders CJ (1997) Mechanisms of mating disruption in moths. In: Cardé RT, Minks AK (eds) Insect pheromone research. Springer, Boston, MA, pp 333–346

    Google Scholar 

  • Sarfraz M, Dosdall LM, Keddie BA (2006) Diamondback moth-host plant interactions: implications for pest management. Crop Prot 25:625–639

    CAS  Google Scholar 

  • Schroeder PC, Shelton AM, Ferguson CS, Hoffmann MP, Petzoldt CH (2000) Application of synthetic sex pheromone for management of diamondback moth, Plutella xylostella, in cabbage. Entomol Exp Appl 94:243–248

    CAS  Google Scholar 

  • Sharov A, Leonard D, Liebhold A, Roberts E, Dickerson W (2002) “Slow the Spread” a national program to contain the gypsymoth. J For 100:30–35

    Google Scholar 

  • Struye MH, Mortier HJ, Arnold G, Miniggio C, Borneck R (1994) Microprocessor-controlled monitoring of honeybee flight activity at the hive entrance. Apidologie 25:384–395

    Google Scholar 

  • Suckling D, SR G, Gibb A, Karg G (1999) Predicting atmospheric concentration of pheromone in treated apple orchards. J Chem Ecol 25:117–139

    CAS  Google Scholar 

  • Tamaki Y (1985) Sex pheromones. In: Comprehensive insect physiology, biochemistry and pharmacology, vol 9: Behaviour. Pergamon Press, Willowdale, ON, pp 145–191

    Google Scholar 

  • Tishechkin DY (2013) Vibrational background noise in herbaceous plants and its impact on acoustic communication of small Auchenorrhyncha and Psyllinea (Homoptera). Entomol Rev 93:548–558

    Google Scholar 

  • Torres-Vila LM, Rodríguez-Molina MC, Stockel J (2002) Delayed mating reduces reproductive output of female European grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae). Bull Entomol Res 92:241–249

    CAS  PubMed  Google Scholar 

  • Trimble R (1995) Mating disruption for controlling the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), in organic apple production in southwestern Ontario. Can Entomol 127:493–505

    Google Scholar 

  • Vélez MJ, Brockmann HJ (2006) Seasonal variation in selection on male calling song in the field cricket, Gryllus rubens. Anim Behav 72:439–448

    Google Scholar 

  • Virant-Doberlet M, Čokl A, Zorović M (2006) Use of substrate vibrations for orientation: from behaviour to physiology. In: Drosopoulos S, Claridge M (eds) Insect sounds and communication: Physiology, behaviour, ecology, and evolution. Taylor & Francis, Boca Raton, FL, pp 81–97

    Google Scholar 

  • Virant-Doberlet M, King RA, Polajnar J, Symondson WOC (2011) Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication. Mol Ecol 20:2204–2216

    PubMed  Google Scholar 

  • Virant-Doberlet M, Mazzoni V, de Groot M, Polajnar J, Lucchi A, Symondson OC, Čokl A (2014) Vibrational communication networks: eavesdropping and biotic noise. In: Cocroft R, Gogala M, Hill P, Wessel A (eds) Studying vibrational communication. Animal signals and communication, vol 3. Springer, Berlin

    Google Scholar 

  • Wall C, Sturgeon D, Greenway A, Perry J (1981) Contamination of vegetation with synthetic sex-attractant released from traps for the pea moth, Cydia nigricana. Entomol Exp Appl 30:111–115

    CAS  Google Scholar 

  • Wang N, Zhang N, Wang M (2006) Wireless sensors in agriculture and food industry – recent development and future perspective. Comput Electron Agric 50:1–14

    CAS  Google Scholar 

  • Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53:503–522

    CAS  PubMed  Google Scholar 

  • Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100

    CAS  PubMed  Google Scholar 

  • Wu CH, Elias DO (2014) Vibratory noise in anthropogenic habitats and its effect on prey detection in a web-building spider. Anim Behav 90:17–56

    Google Scholar 

  • Wyatt T (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, Cambridge

    Google Scholar 

  • Zschokke S, Hénaut Y, Benjamin SP, Garcia-Ballinas JA (2006) Prey-capture strategies in sympatric web-building spiders. Can J Zool 84:964–973

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Claudio Ioriatti and Dr. Vittorio Veronelli for discussion and constructive comments to the manuscript; we thank Karen Wells for language revision. Financial support to the studies have been provided by Interneuron Project (IASMA, Fondazione Edmund Mach), research program P1-0255 and research projectV5-0525 (Slovenian National Research Agency), by Fondi Ateneo of Pisa University (2007), the European Union Seventh Framework Program (FP7/2007–2013) under the Grant agreement no. 265865, and CBC-Europe Ltd. (Milano, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Mazzoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazzoni, V. et al. (2019). Mating Disruption by Vibrational Signals: State of the Field and Perspectives. In: Hill, P., Lakes-Harlan, R., Mazzoni, V., Narins, P., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Studying Vibrational Behavior . Animal Signals and Communication, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-22293-2_17

Download citation

Publish with us

Policies and ethics