Skip to main content

Threats Behind Default Configurations of Network Devices: Wired Local Network Attacks and Their Countermeasures

  • Chapter
  • First Online:
Handbook of Computer Networks and Cyber Security

Abstract

Network devices not only allow users to build powerful local networks but also to protect them, their data, and their communications from unwanted intruders. However, it is important to give special attention to security within local networks, since internal attacks could be catastrophic for users. Internal security can be overlooked once the belief that all efforts and resources should be focused on protecting users from external intruders has been established. That belief is dangerous since it can foster the misconfiguration of internal network devices, providing a network infrastructure based on weak settings. This chapter should serve as a summary of a series of local network attacks as well as their countermeasures through the right configuration of the network devices. The attacks will be presented through a set of practical scenarios emulated on GNS3 to clarify their impact and consequences. Also, countermeasures will be discussed to illustrate their impact on networks and the advantages and disadvantages of their application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ko, H., Mesicek, L., Choi, J., Choi, J., & Hwang, S. (2018). A study on secure contents strategies for applications with DRM on cloud computing. International Journal of Cloud Applications, 8(1), 143–153.

    Article  Google Scholar 

  2. Tewari, A., & Gupta, B. (2018). Security, privacy and trust of different layers in Internet-of-Things (IoTs) framework. Future Generation Computer Systems. https://doi.org/10.1016/ j.future.2018.04.027

  3. Gupta, B., Agrawal, D. P., & Yamaguchi, S. (2016). Handbook of research on modern cryptographic solutions for computer and cyber security. Pennsylvania: IGI Global.

    Book  Google Scholar 

  4. Gupta, B. B. (2018). Computer and cyber security: principles, algorithm, applications, and perspectives. Boca Raton: CRC Press.

    Google Scholar 

  5. Welsh, C. (2013). GNS3 network simulation guide. Birmingham: Packt.

    Google Scholar 

  6. García Rambla, J. L. (2012). Ataques en redes de datos IPv4 e IPv6 (p. 272). Madrid, Spain: 0xWORD.

    Google Scholar 

  7. Sommer, J., et al. (2010). Ethernet–a survey on its fields of application. IEEE Communications Surveys Tutorials, 12(2), 263–284.

    Article  Google Scholar 

  8. Metcalfe, R. M., & Boggs, D. R. (1976). Ethernet: distributed packet switching for local computer networks. Communications of the ACM, 19(7), 395–404.

    Article  Google Scholar 

  9. Mitnick, K. D., & Simon, W. L. (2009). The art of intrusion: the real stories behind the exploits of hackers, intruders and deceivers. Hoboken, NJ: Wiley.

    Google Scholar 

  10. Kiravuo, T., Sarela, M., & Manner, J. (2013). A survey of Ethernet LAN security. IEEE Communications Surveys Tutorials, 15(3), 1477–1491.

    Article  Google Scholar 

  11. Santos, O., & Stuppi, J. (2015). CCNA security 210–260 official cert guide. Indianapolis,IN: Cisco Press.

    Google Scholar 

  12. Cisco Packet Tracer. (2009). Cisco networking academy. San Jose, CA: Cisco Systems.

    Google Scholar 

  13. Dooley, K., & Brown, I. (2006). Cisco IOS cookbook: Field-tested solutions to Cisco router problems. Sebastopol, CA: O’Reilly Media.

    Google Scholar 

  14. Sun, L., Wu, J., Zhang, Y., & Yin, H. (2013). Comparison between physical devices and simulator software for Cisco network technology teaching. In Computer Science and Education (ICCSE), 2013 8th International Conference on (pp. 1357–1360). IEEE.

    Google Scholar 

  15. Walters, B. (1999). VMware virtual platform. Linux Journal, 1999(63es), 6.

    Google Scholar 

  16. Oracle, V. M. (2015). VirtualBox. https://www.virtualbox.org/

  17. Zhang, Y., Liang, R., & Ma, H. (2012). Teaching innovation in computer network course for undergraduate students with packet tracer. IERI Procedia, 2, 504–510.

    Article  Google Scholar 

  18. Janitor, J., Jakab, F., & Kniewald, K. (2010). Visual learning tools for teaching/learning computer networks: Cisco networking academy and packet tracer. In: 2010 Sixth International Conference on Networking and Services (pp. 351–355). IEEE.

    Google Scholar 

  19. Moreno-Montero, Á. M., & Retorillo-Manzano, D. (2017). Design and deployment of hands-on network lab experiments for computer science engineers. International Journal of Engineering Education, 33, 855–864.

    Google Scholar 

  20. Archana, C. (2015). Analysis of RIPv2, OSPF, EIGRP Configuration on router Using CISCO Packet tracer. International Journal of Engineering Science Innovative Technology, 4(2), 215–222.

    Google Scholar 

  21. Makasiranondh, W., Maj, S. P., & Veal, D. (2010). Pedagogical evaluation of simulation tools usage in network technology education. World Transactions on Engineering Technology Education, 8(3), 321–326.

    Google Scholar 

  22. Wang, Y., & Wang, J. (2010). Use gns3 to simulate network laboratory. Computer Programming Skills Maintenance, 12, 046.

    Google Scholar 

  23. Gil, P., Garcia, G. J., Delgado, A., Medina, R. M., Calderon, A., & Marti, P. (2014). Computer networks virtualization with GNS3: Evaluating a solution to optimize resources and achieve a distance learning. In Frontiers in Education Conference (FIE), 2014 IEEE (pp. 1–4). IEEE.

    Google Scholar 

  24. Faxun, L. (2010). The application of GNS3 in network experiments. Computer Telecommunication, 10, 032.

    Google Scholar 

  25. PENG, C.-y., & LIU, B. (2010). Application of GNS3 at computer network teaching [J]. Theory Research, 20, 136.

    Google Scholar 

  26. Zimmermann, H. (1980). OSI reference model--The ISO model of architecture for open systems interconnection. IEEE Transactions on Communications, 28(4), 425–432.

    Article  Google Scholar 

  27. Boyles, T. (2010). CCNA security study guide: exam 640-553. Hoboken, NJ: Wiley.

    Google Scholar 

  28. Dubrawsky, I. (2004). Safe layer 2 security in-depth. White paper, San Jose, CA: Cisco Inc.

    Google Scholar 

  29. Cisco Systems. (2008). Cisco IOS security configuration guide. Retrieved from https://www.cisco.com/c/en/us/td/docs/ios/security/configuration/guide/12_4/sec_12_4_book.pdf

  30. Paquet, C. (2009). Implementing Cisco IOS network security (IINS). Indianapolis, Indiana: Cisco Press.

    Google Scholar 

  31. Vykopal, J., Plesnik, T., & Minarik, P. (2009). Network-based dictionary attack detection. In Future Networks, 2009 International Conference on (pp. 23–27). IEEE.

    Google Scholar 

  32. Postel, J., & Reynolds, J. K. (1983). Telnet protocol specification (RFC 854). Retrieved from https://tools.ietf.org/html/rfc854

  33. Ylonen, T., & Lonvick, C. (2005). The secure shell (SSH) protocol architecture (RFC 4251). Retrieved from https://tools.ietf.org/html/rfc4251

  34. Bhaiji, Y. (2007). Understanding, preventing, and defending against layer 2 attacks. Retrieved from http://www.nanog.org/meetings/nanog42/presentations/Bhaiji_Layer_2_Attacks.pdf

  35. Plummer, D. (1982). Ethernet address resolution protocol: Or converting network protocol addresses to 48. bit Ethernet address for transmission on Ethernet hardware (RFC 826). Retrieved from https://tools.ietf.org/html/rfc826

  36. Whalen, S. (2001). An introduction to ARP spoofing. Retrieved from http://node99.org/projects/arpspoof

  37. Wagner, R. (2001). Address resolution protocol spoofing and man-in-the-middle attacks. The SANS Institute.

    Google Scholar 

  38. Spangler, R. (2003). Packet sniffing on layer 2 switched local area networks. Packetwatch Research, 1–5.

    Google Scholar 

  39. Ornaghi, A., & Valleri, M. (2003). Man in the middle attacks. In Blackhat Conference Europe.

    Google Scholar 

  40. Ramachandran, V., & Nandi, S. (2005). Detecting ARP spoofing: An active technique. In: International Conference on Information Systems Security (pp. 239–250). Berlin: Springer.

    Google Scholar 

  41. Convery, S. (2002). Hacking layer 2: Fun with Ethernet switches. Retrieved from https://www.blackhat.com/presentations/bh-usa-02/bh-us-02-convery-switches.pdf.

  42. Altunbasak, H., Krasser, S., Owen, H. L., Grimminger, J., Huth, H.-P., & Sokol, J. (2005). Securing layer 2 in local area networks. In: International conference on networking (pp. 699–706). Berlin: Springer.

    Google Scholar 

  43. IEEE. (2018). IEEE standard for local and metropolitan area network-bridges and bridged networks. IEEE Std 802.1Q-2018 (Revision of IEEE Std 802.1Q-2014), 1-1993. https://doi.org/10.1109/IEEESTD.2018.8403927

  44. Annaamalai, A., & Mahajan, U. (2002). Dynamic trunk protocol. Google Patents

    Google Scholar 

  45. Cisco Networking Academy. (2014). Dynamic trunking protocol (3.2.3) > Cisco Networking Academy’s Introduction to VLANs. Retrieved from http://www.ciscopress.com/articles/article.asp?p=2181837&seqNum=8

  46. Postel, J. (1981). Internet control message protocol (RFC 792). Retrieved from https://tools.ietf.org/html/rfc792

  47. Low, C. (2001). ICMP attacks illustrated. SANS Institute. Retrieved from https://www.sans.org/reading-room/whitepapers/threats/icmp-attacks-illustrated-477

  48. Serrano-Marín, J. D. (2018). Implementación de un sistema de detección/prevención de intrusiones. Jaén: Universidad de Jaén

    Google Scholar 

  49. Ramakrishna, P., & Maarof, M. (2002). Detection and prevention of active sniffing on routing protocol. In: SCOReD 2002. Student Conference on Research and Development (pp. 498–501). IEEE.

    Google Scholar 

  50. Kumar, S. (2007). Smurf-based distributed denial of service (DDoS) attack amplification in internet. In: Internet Monitoring and Protection, 2007. ICIMP 2007. Second International Conference on (pp. 25–25). IEEE.

    Google Scholar 

  51. Senie, D. (1999). Changing the default for directed broadcasts in routers (RFC 2644). Retrieved from https://tools.ietf.org/html/rfc2644

  52. Mirkovic, J., & Reiher, P. (2004). A taxonomy of DDoS attack and DDoS defense mechanisms. ACM SIGCOMM Computer Communication Review, 34(2), 39–53.

    Article  Google Scholar 

  53. Cisco. (2014). Comparing traffic policing and traffic shaping for bandwidth limiting. Retrieved from https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/19645-policevsshape.html

  54. Eddy, W. (2007). TCP SYN flooding attacks and common mitigations, 2070-1721. https://www.rfc-editor.org/rfc/rfc4987.txt

  55. Droms, R. (1997). Dynamic host configuration protocol, 2070-1721. http://www.rfc-editor.org/info/rfc2131

  56. Daş, R., Karabade, A., & Tuna, G. (2015). Common network attack types and defense mechanisms. In: Signal Processing and Communications Applications Conference (SIU), 2015 23th (pp. 2658–2661). IEEE.

    Google Scholar 

Download references

Acknowledgment

This research work has been supported by the Spanish Ministry of Education and Vocational Training under a FPU fellowship (FPU17/03276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vázquez-Ingelmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vázquez-Ingelmo, A., Moreno-Montero, Á.M., García-Peñalvo, F.J. (2020). Threats Behind Default Configurations of Network Devices: Wired Local Network Attacks and Their Countermeasures. In: Gupta, B., Perez, G., Agrawal, D., Gupta, D. (eds) Handbook of Computer Networks and Cyber Security. Springer, Cham. https://doi.org/10.1007/978-3-030-22277-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22277-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22276-5

  • Online ISBN: 978-3-030-22277-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics