Skip to main content

Assessing the Advantages, Limitations and Potential of Human Primary Prostate Epithelial Cells as a Pre-clinical Model for Prostate Cancer Research

  • Chapter
  • First Online:
Human Cell Transformation

Abstract

Choosing an appropriate cell model(s) is the first decision to be made before starting a new project or programme of study. Here, we address the rationale that can be behind this decision and we summarize the current cell models that are used to study prostate cancer. Researchers face the challenge of choosing a model that recapitulates the complexity and heterogeneity of prostate cancer. The use of primary prostate epithelial cells cultured from patient tissue is discussed, and the necessity for close clinical-academic collaboration in order to do this is highlighted. Finally, a novel quantitative phase imaging technique is described, along with the potential for cell characterization to not only include gene expression and protein markers but also morphological features, cell behaviour and kinetic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harrison, R. K. (2016). Phase II and phase III failures: 2013-2015. Nature Reviews. Drug Discovery, 15, 817–818.

    Article  CAS  PubMed  Google Scholar 

  2. Jardim, D. L., Groves, E. S., Breitfeld, P. P., & Kurzrock, R. (2017). Factors associated with failure of oncology drugs in late-stage clinical development: A systematic review. Cancer Treatment Reviews, 52, 12–21.

    Article  PubMed  Google Scholar 

  3. Mak, I. W., Evaniew, N., & Ghert, M. (2014). Lost in translation: Animal models and clinical trials in cancer treatment. American Journal of Translational Research, 6, 114–118.

    PubMed  PubMed Central  Google Scholar 

  4. Risbridger, G. P., & Taylor, R. A. (2016). Patient-derived prostate Cancer: FROM basic science to the clinic. Horm Cancer, 7, 236–240.

    Article  PubMed  Google Scholar 

  5. Cunningham, D., & You, Z. (2015). In vitro and in vivo model systems used in prostate cancer research. Journal of Biological Methods, 2, e17.

    Article  PubMed  Google Scholar 

  6. Mitchell, S., Abel, P., Ware, M., Stamp, G., & Lalani, E. (2000). Phenotypic and genotypic characterization of commonly used human prostatic cell lines. BJU International, 85, 932–944.

    Article  CAS  PubMed  Google Scholar 

  7. Rhim, J. S. (2000). In vitro human cell culture models for the study of prostate cancer. Prostate Cancer and Prostatic Diseases, 3, 229–235.

    Article  CAS  PubMed  Google Scholar 

  8. Rhim, J. S. (2013). Human prostate epithelial cell cultures. Methods in Molecular Biology, 946, 383–393.

    Article  CAS  PubMed  Google Scholar 

  9. Russell, P. J., & Kingsley, E. A. (2003). Human prostate cancer cell lines. Methods in Molecular Medicine, 81, 21–39.

    CAS  PubMed  Google Scholar 

  10. Sampson, N., Neuwirt, H., Puhr, M., Klocker, H., & Eder, I. E. (2013). In vitro model systems to study androgen receptor signaling in prostate cancer. Endocrine-Related Cancer, 20, R49–R64.

    Article  CAS  PubMed  Google Scholar 

  11. Schwab, T. S., Stewart, T., Lehr, J., Pienta, K. J., Rhim, J. S., & Macoska, J. A. (2000). Phenotypic characterization of immortalized normal and primary tumor-derived human prostate epithelial cell cultures. Prostate, 44, 164–171.

    Article  CAS  PubMed  Google Scholar 

  12. Gu, Y., Li, H., Miki, J., Kim, K. H., Furusato, B., Sesterhenn, I. A., et al. (2006). Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines. Experimental Cell Research, 312, 831–843.

    Article  CAS  PubMed  Google Scholar 

  13. Li, H., Zhou, J., Miki, J., Furusato, B., Gu, Y., Srivastava, S., et al. (2008). Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells. Experimental Cell Research, 314, 92–102.

    Article  CAS  PubMed  Google Scholar 

  14. Miki, J., Furusato, B., Li, H., Gu, Y., Takahashi, H., Egawa, S., et al. (2007). Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Research, 67, 3153–3161.

    Article  CAS  PubMed  Google Scholar 

  15. Rhim, J. S., Li, H., & Furusato, B. (2011). Novel human prostate epithelial cell culture models for the study of carcinogenesis and of normal stem cells and cancer stem cells. Advances in Experimental Medicine and Biology, 720, 71–80.

    Article  CAS  PubMed  Google Scholar 

  16. Lee, K. M., Choi, K. H., & Ouellette, M. M. (2004). Use of exogenous hTERT to immortalize primary human cells. Cytotechnology, 45, 33–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huggins, C., Stephens, R. C., & Hodges, C. V. (1941). Studies on prostatic cancer: 2. The effects of castration on advanced carcinoma of the prostate gland. The Archives of Surgery, 43, 209.

    Article  CAS  Google Scholar 

  18. Boutros, P. C., Fraser, M., Harding, N. J., de Borja, R., Trudel, D., Lalonde, E., et al. (2015). Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nature Genetics, 47, 736–745.

    Article  CAS  PubMed  Google Scholar 

  19. Cooper, C. S., Eeles, R., Wedge, D. C., Van Loo, P., Gundem, G., Alexandrov, L. B., et al. (2015). Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nature Genetics, 47, 367–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gundem, G., Van Loo, P., Kremeyer, B., Alexandrov, L. B., JMC, T., Papaemmanuil, E., et al. (2015). The evolutionary history of lethal metastatic prostate cancer. Nature, 520, 353–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaffenberger, S. D., & Barbieri, C. E. (2016). Molecular subtyping of prostate cancer. Current Opinion in Urology, 26, 213–218.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tosoian, J. J., & Antonarakis, E. S. (2017). Molecular heterogeneity of localized prostate cancer: More different than alike. Translational Cancer Research, 6, S47–S50.

    Article  PubMed  Google Scholar 

  23. Walker, S. M., Knight, L. A., AM, M. C., Logan, G. E., Berge, V., Sherif, A., et al. (2017). Molecular subgroup of primary prostate Cancer presenting with metastatic biology. European Urology, 72, 509–518.

    Article  CAS  PubMed  Google Scholar 

  24. Yadav, S. S., Stockert, J. A., Hackert, V., Yadav, K. K., & Tewari, A. K. (2018). Intratumor heterogeneity in prostate cancer. Urologic Oncology, 36, 349–360.

    Article  PubMed  Google Scholar 

  25. Theodore, S., Sharp, S., Zhou, J., Turner, T., Li, H., Miki, J., et al. (2010). Establishment and characterization of a pair of non-malignant and malignant tumor derived cell lines from an African American prostate cancer patient. International Journal of Oncology, 37, 1477–1482.

    CAS  PubMed  Google Scholar 

  26. Clark, J., Attard, G., Jhavar, S., Flohr, P., Reid, A., De-Bono, J., et al. (2008). Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene, 27, 1993–2003.

    Article  CAS  PubMed  Google Scholar 

  27. Frame, F. M., Noble, A. R., Klein, S., Walker, H. F., Suman, R., Kasprowicz, R., et al. (2017). Tumor heterogeneity and therapy resistance - implications for future treatments ofprostate cancer. Journal of Cancer Metastasis and Treatment, 3, 302–314.

    Article  CAS  Google Scholar 

  28. Aly, A., Mullins, C. D., & Hussain, A. (2015). Understanding heterogeneity of treatment effect in prostate cancer. Current Opinion in Oncology, 27, 209–216.

    Article  CAS  PubMed  Google Scholar 

  29. Cyll, K., Ersvær, E., Vlatkovic, L., Pradhan, M., Kildal, W., Kjær, M. A., et al. (2017). Tumour heterogeneity poses a significant challenge to cancer biomarker research. British Journal of Cancer, 117, 367–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lalonde, E., Ishkanian, A. S., Sykes, J., Fraser, M., Ross-Adams, H., et al. (2014). Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: A retrospective cohort study. The Lancet Oncology, 15, 1521–1532.

    Article  PubMed  Google Scholar 

  31. Frame, F. M., Pellacani, D., Collins, A. T., & Maitland, N. J. (2016). Harvesting human prostate tissue material and culturing primary prostate epithelial cells. Methods in Molecular Biology, 1443, 181–201.

    Article  CAS  PubMed  Google Scholar 

  32. Peehl, D. M. (2005). Primary cell cultures as models of prostate cancer development. Endocrine-Related Cancer, 12, 19–47.

    Article  CAS  PubMed  Google Scholar 

  33. Peehl, D. M., & Stamey, T. A. (1986). Growth responses of normal, benign hyperplastic, and malignant human prostatic epithelial cells in vitro to cholera toxin, pituitary extract, and hydrocortisone. Prostate, 8, 51–61.

    Article  CAS  PubMed  Google Scholar 

  34. Rose, A., Xu, Y., Chen, Z., Fan, Z., Stamey, T. A., JE, M. N., et al. (2005). Comparative gene and protein expression in primary cultures of epithelial cells from benign prostatic hyperplasia and prostate cancer. Cancer Letters, 227, 213–222.

    Article  CAS  PubMed  Google Scholar 

  35. Caspar, A., Caspar, A., Mostertz, J., Leymann, M., Ziegler, P., Evert, K., Evert, M., et al. (2016). In vitro cultivation of primary prostate Cancer cells alters the molecular biomarker pattern. In Vivo, 30, 573–579.

    CAS  PubMed  Google Scholar 

  36. Collins, A. T. (2018). Methodologies applied to establish cell cultures in prostate Cancer. Methods in Molecular Biology, 1786, 55–66.

    Article  CAS  PubMed  Google Scholar 

  37. Niranjan, B., Lawrence, M. G., Papargiris, M. M., Richards, M. G., Hussain, S., Frydenberg, M., et al. (2013). Primary culture and propagation of human prostate epithelial cells. Methods in Molecular Biology, 945, 365–382.

    Article  PubMed  Google Scholar 

  38. Dalrymple, S., Antony, L., Xu, Y., Uzgare, A. R., Arnold, J. T., Savaugeot, J., et al. (2005). Role of notch-1 and E-cadherin in the differential response to calcium in culturing normal versus malignant prostate cells. Cancer Research, 65, 9269–9279.

    Article  CAS  PubMed  Google Scholar 

  39. Litvinov, I. V., Vander Griend, D. J., Xu, Y., Antony, L., Dalrymple, S. L., & Isaacs, J. T. (2006). Low-calcium serum-free defined medium selects for growth of normal prostatic epithelial stem cells. Cancer Research, 66, 8598–8607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hall, J. A., Maitland, N. J., Stower, M., & Lang, S. H. (2002). Primary prostate stromal cells modulate the morphology and migration of primary prostate epithelial cells in type 1 collagen gels. Cancer Research, 62, 58–62.

    CAS  PubMed  Google Scholar 

  41. Lau, K. M., LaSpina, M., Long, J., & Ho, S. M. (2000). Expression of estrogen receptor (ER)-alpha and ER-beta in normal and malignant prostatic epithelial cells: Regulation by methylation and involvement in growth regulation. Cancer Research, 60, 3175–3182.

    CAS  PubMed  Google Scholar 

  42. Zheng, D. Q., Woodard, A. S., Fornaro, M., Tallini, G., & Languino, L. R. (1999). Prostatic carcinoma cell migration via alpha(v)beta3 integrin is modulated by a focal adhesion kinase pathway. Cancer Research, 59, 1655–1664.

    CAS  PubMed  Google Scholar 

  43. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65, 10946–10951.

    Article  CAS  PubMed  Google Scholar 

  44. Polson, E. S., Lewis, J. L., Celik, H., Mann, V. M., Stower, M. J., Simms, M. S., et al. (2013). Monoallelic expression of TMPRSS2/ERG in prostate cancer stem cells. Nature Communications, 4, 1623.

    Article  PubMed  Google Scholar 

  45. Ulukaya, E., Frame, F. M., Cevatemre, B., Pellacani, D., Walker, H., Mann, V. M., Simms, M. S., et al. (2013). Differential cytotoxic activity of a novel palladium-based compound on prostate cell lines, primary prostate epithelial cells and prostate stem cells. PLoS One, 8, e64278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Robinson, E. J., Neal, D. E., & Collins, A. T. (1998). Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. Prostate, 37, 149–160.

    Article  CAS  PubMed  Google Scholar 

  47. Kasprowicz, R., Suman, R., & O’Toole, P. (2017). Characterising live cell behaviour: Traditional label-free and quantitative phase imaging approaches. The International Journal of Biochemistry & Cell Biology, 84, 89–95.

    Article  CAS  Google Scholar 

  48. Marrison, J., Raty, L., Marriott, P., & O’Toole, P. (2013). Ptychography–a label free, high-contrast imaging technique for live cells using quantitative phase information. Scientific Reports, 3, 2369.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Suman, R., Smith, G., Hazel, K. E., Kasprowicz, R., Coles, M., O’Toole, P., et al. (2016). Label-free imaging to study phenotypic behavioural traits of cells in complex co-cultures. Scientific Reports, 6, 22032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mollinedo, F., & Gajate, C. (2003). Microtubules, microtubule-interfering agents and apoptosis. Apoptosis, 8, 413–450.

    Article  CAS  PubMed  Google Scholar 

  51. Adamson, R. E., Frazier, A. A., Evans, H., Chambers, K. F., Schenk, E., Essand, M., et al. (2012). In vitro primary cell culture as a physiologically relevant method for preclinical testing of human oncolytic adenovirus. Human Gene Therapy, 23, 218–230.

    Article  CAS  PubMed  Google Scholar 

  52. Schenk, E., Essand, M., Kraaij, R., Adamson, R., Maitland, N. J., & Bangma, C. H. (2014). Preclinical safety assessment of Ad[I/PPT-E1A], a novel oncolytic adenovirus for prostate cancer. Hum Gene Ther Clin Dev, 25, 7–15.

    Article  CAS  PubMed  Google Scholar 

  53. Timofeeva, O. A., et al. (2017). Conditionally reprogrammed normal and primary tumor prostate epithelial cells: A novel patient-derived cell model for studies of human prostate cancer. Oncotarget, 8, 22741–22758.

    Article  PubMed  Google Scholar 

  54. Palechor-Ceron, N., Suprynowicz, F. A., Upadhyay, G., Dakic, A., Minas, T., Simic, V., et al. (2013). Radiation induces diffusible feeder cell factor(s) that cooperate with ROCK inhibitor to conditionally reprogram and immortalize epithelial cells. The American Journal of Pathology, 183, 1862–1870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, X., Ory, V., Chapman, S., Yuan, H., Albanese, C., Kallakury, B., et al. (2012). ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. The American Journal of Pathology, 180, 599–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peters-Hall, J. R., Coquelin, M. L., Torres, M. J., La Ranger, R., Alabi, B. R., Sho, S., et al. (2018). Long-term culture and cloning of primary human bronchial basal cells that maintain multipotent differentiation capacity and CFTR channel function. American Journal of Physiology. Lung Cellular and Molecular Physiology, 315, L313–L327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yazdani, M. (2016). Technical aspects of oxygen level regulation in primary cell cultures: A review. Interdisciplinary Toxicology, 9, 85–89.

    Article  CAS  PubMed  Google Scholar 

  58. Forsyth, N. R., Evans, A. P., Shay, J. W., & Wright, W. E. (2003). Developmental differences in the immortalization of lung fibroblasts by telomerase. Aging Cell, 2, 235–243.

    Article  CAS  PubMed  Google Scholar 

  59. Akerfelt, M., Bayramoglu, N., Robinson, S., Toriseva, M., Schukov, H. P., Härmä, V., et al. (2015). Automated tracking of tumor-stroma morphology in microtissues identifies functional targets within the tumor microenvironment for therapeutic intervention. Oncotarget, 6, 30035–30056.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Drost, J., Karthaus, W. R., Gao, D., Driehuis, E., Sawyers, C. L., Chen, Y., et al. (2016). Organoid culture systems for prostate epithelial and cancer tissue. Nature Protocols, 11, 347–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ellem, S. J., De-Juan-Pardo, E. M., & Risbridger, G. P. (2014). In vitro modeling of the prostate cancer microenvironment. Advanced Drug Delivery Reviews, 79-80, 214–221.

    Article  CAS  PubMed  Google Scholar 

  62. Gao, D., Vela, I., Sboner, A., Iaquinta, P. J., Karthaus, W. R., Gopalan, A., et al. (2014). Organoid cultures derived from patients with advanced prostate cancer. Cell, 159, 176–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Harma, V., Virtanen, J., Mäkelä, R., Happonen, A., Mpindi, J. P., Knuuttila, M., et al. (2010). A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses. PLoS One, 5, e10431.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mosaad, E., Chambers, K., Futrega, K., Clements, J., & Doran, M. R. (2018). Using high throughput microtissue culture to study the difference in prostate cancer cell behavior and drug response in 2D and 3D co-cultures. BMC Cancer, 18, 592.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Park, J. W., Lee, J. K., Phillips, J. W., Huang, P., Cheng, D., Huang, J., et al. (2016). Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay. Proceedings of the National Academy of Sciences of the United States of America, 113, 4482–4487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tyson, D. R., Inokuchi, J., Tsunoda, T., Lau, A., & Ornstein, D. K. (2007). Culture requirements of prostatic epithelial cell lines for acinar morphogenesis and lumen formation in vitro: Role of extracellular calcium. Prostate, 67, 1601–1613.

    Article  CAS  PubMed  Google Scholar 

  67. Xu, X., Gurski, L. A., Zhang, C., Harrington, D. A., Farach-Carson, M. C., & Jia, X. (2012). Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids. Biomaterials, 33, 9049–9060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Prostate Cancer UK through a Research Innovation Award (RIA15-ST2-022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona M. Frame .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frame, F.M. et al. (2019). Assessing the Advantages, Limitations and Potential of Human Primary Prostate Epithelial Cells as a Pre-clinical Model for Prostate Cancer Research. In: Rhim, J., Dritschilo, A., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 1164. Springer, Cham. https://doi.org/10.1007/978-3-030-22254-3_9

Download citation

Publish with us

Policies and ethics