Skip to main content

Emerging Role of Novel Biomarkers of Ly6 Gene Family in Pan Cancer

  • Chapter
  • First Online:
Human Cell Transformation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1164))

Abstract

Stem cell antigen-1 (Sca-1) is the first identified member of mouse Ly6 gene family. We discovered that Sca-1 disrupts TGFβ signaling and enhances mammary tumorigenesis in a DMBA-induced mammary tumor model. Sca-1 gene is lost during evolution in humans. Human Ly6 genes Ly6D, LyE, LyH, and LyK on human chromosome 8q24.3 genes are syntenic to the mouse chromosome 15 where Sca-1 is located. We found that Ly6D, E, H, and K are upregulated in human cancer compared to normal tissue and that the increased expression of these genes are associated with poor prognosis of multiple types of human cancer. Several other groups have indicated increased expression of Ly6 genes in human cancer. Here we described the relevance of expression of human Ly6D, LyE, LyH, and LyK in functioning of normal tissues and tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yutoku, M., Grossberg, A. L., & Pressman, D. (1974). A cell surface antigenic determinant present on mouse plasmacytes and only about half of mouse thymocytes. Journal of Immunology, 112(5), 1774–1781.

    CAS  Google Scholar 

  2. Dall, G. V., et al. (2017). SCA-1 labels a subset of estrogen-responsive bipotential repopulating cells within the CD24(+) CD49f(hi) mammary stem cell-enriched compartment. Stem Cell Reports, 8(2), 417–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ceder, J. A., Aalders, T. W., & Schalken, J. A. (2017). Label retention and stem cell marker expression in the developing and adult prostate identifies basal and luminal epithelial stem cell subpopulations. Stem Cell Research & Therapy, 8(1), 95.

    Article  Google Scholar 

  4. Zakaria, N., et al. (2018). Inhibition of NF-kappaB signaling reduces the stemness characteristics of lung cancer stem cells. Frontiers in Oncology, 8, 166.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Upadhyay, G., et al. (2011). Stem cell antigen-1 enhances tumorigenicity by disruption of growth differentiation factor-10 (GDF10)-dependent TGF-beta signaling. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7820–7825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Loughner, C. L., et al. (2016). Organization, evolution and functions of the human and mouse Ly6/uPAR family genes. Human Genomics, 10, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Thul, P. J., et al. (2017). A subcellular map of the human proteome. Science, 356(6340), eaal3321.

    Article  PubMed  Google Scholar 

  8. Uhlen, M., et al. (2015). Proteomics. Tissue-based map of the human proteome. Science, 347(6220), 1260419.

    Article  Google Scholar 

  9. Uhlen, M., et al. (2017). A pathology atlas of the human cancer transcriptome. Science, 357(6352), eaan2507.

    Article  PubMed  Google Scholar 

  10. Hughes, M., et al. (2013). Ly6e expression is restricted to syncytiotrophoblast cells of the mouse placenta. Placenta, 34(9), 831–835.

    Article  CAS  PubMed  Google Scholar 

  11. Puddifoot, C. A., et al. (2015). Ly6h regulates trafficking of alpha7 nicotinic acetylcholine receptors and nicotine-induced potentiation of glutamatergic signaling. The Journal of Neuroscience, 35(8), 3420–3430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fujihara, Y., Okabe, M., & Ikawa, M. (2014). GPI-anchored protein complex, LY6K/TEX101, is required for sperm migration into the oviduct and male fertility in mice. Biology of Reproduction, 90(3), 60.

    Article  PubMed  Google Scholar 

  13. Rhodes, D. R., et al. (2004). ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia, 6(1), 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cancer Genome Atlas Research Network, et al. (2013). The cancer genome atlas pan-cancer analysis project. Nature Genetics, 45(10), 1113–1120.

    Article  PubMed Central  Google Scholar 

  15. Luo, L., et al. (2016). Distinct lymphocyte antigens 6 (Ly6) family members Ly6D, Ly6E, Ly6K and Ly6H drive tumorigenesis and clinical outcome. Oncotarget, 7(10), 11165–11193.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nagy, A., et al. (2018). Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Scientific Reports, 8(1), 9227.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mayama, A., et al. (2018). OLFM4, LY6D and S100A7 as potent markers for distant metastasis in estrogen receptor-positive breast carcinoma. Cancer Science, 109(10), 3350–3359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Colnot, D. R., et al. (2004). Clinical significance of micrometastatic cells detected by E48 (Ly-6D) reverse transcription-polymerase chain reaction in bone marrow of head and neck cancer patients. Clinical Cancer Research, 10(23), 7827–7833.

    Article  CAS  PubMed  Google Scholar 

  19. Dhawan, D., et al. (2018). Naturally-occurring canine invasive urothelial carcinoma harbors luminal and basal transcriptional subtypes found in human muscle invasive bladder cancer. PLoS Genetics, 14(8), e1007571.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lv, Y., et al. (2018). Overexpression of lymphocyte antigen 6 complex, locus E in gastric cancer promotes cancer cell growth and metastasis. Cellular Physiology and Biochemistry, 45(3), 1219–1229.

    Article  CAS  PubMed  Google Scholar 

  21. Kondoh, N., et al. (1999). Identification and characterization of genes associated with human hepatocellular carcinogenesis. Cancer Research, 59(19), 4990–4996.

    CAS  PubMed  Google Scholar 

  22. Gou, S., et al. (2007). Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties. Pancreas, 34(4), 429–435.

    Article  PubMed  Google Scholar 

  23. Bresson-Mazet, C., Gandrillon, O., & Gonin-Giraud, S. (2008). Stem cell antigen 2: A new gene involved in the self-renewal of erythroid progenitors. Cell Proliferation, 41(5), 726–738.

    Article  CAS  PubMed  Google Scholar 

  24. Kim, Y. S., et al. (2016). miRNAs involved in LY6K and estrogen receptor alpha contribute to tamoxifen-susceptibility in breast cancer. Oncotarget, 7(27), 42261–42273.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kong, H. K., et al. (2016). Epigenetic activation of LY6K predicts the presence of metastasis and poor prognosis in breast carcinoma. Oncotarget, 7(34), 55677–55689.

    PubMed  PubMed Central  Google Scholar 

  26. Zhang, B., et al. (2012). Serological antibodies against LY6K as a diagnostic biomarker in esophageal squamous cell carcinoma. Biomarkers, 17(4), 372–378.

    Article  CAS  PubMed  Google Scholar 

  27. Ambatipudi, S., et al. (2012). Genome-wide expression and copy number analysis identifies driver genes in gingivobuccal cancers. Genes, Chromosomes & Cancer, 51(2), 161–173.

    Article  CAS  Google Scholar 

  28. Matsuda, R., et al. (2011). LY6K is a novel molecular target in bladder cancer on basis of integrate genome-wide profiling. British Journal of Cancer, 104(2), 376–386.

    Article  CAS  PubMed  Google Scholar 

  29. Ishikawa, N., et al. (2007). Cancer-testis antigen lymphocyte antigen 6 complex locus K is a serologic biomarker and a therapeutic target for lung and esophageal carcinomas. Cancer Research, 67(24), 11601–11611.

    Article  CAS  PubMed  Google Scholar 

  30. Reese, J. T., et al. (2001). Downregulated expression of Ly-6-ThB on developing T cells marks CD4+CD8+ subset undergoing selection in the thymus. Developmental Immunology, 8(2), 107–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brakenhoff, R. H., et al. (1995). The human E48 antigen, highly homologous to the murine Ly-6 antigen ThB, is a GPI-anchored molecule apparently involved in keratinocyte cell-cell adhesion. The Journal of Cell Biology, 129(6), 1677–1689.

    Article  CAS  PubMed  Google Scholar 

  32. AlHossiny, M., et al. (2016). Ly6E/K signaling to TGFbeta promotes breast cancer progression, immune escape, and drug resistance. Cancer Research, 76(11), 3376–3386.

    Article  CAS  PubMed  Google Scholar 

  33. Yeom, C. J., et al. (2016). LY6E: A conductor of malignant tumor growth through modulation of the PTEN/PI3K/Akt/HIF-1 axis. Oncotarget, 7(40), 65837–65848.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mar, K. B., et al. (2018). LY6E mediates an evolutionarily conserved enhancement of virus infection by targeting a late entry step. Nature Communications, 9(1), 3603.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yu, J., Liang, C., & Liu, S. L. (2017). Interferon-inducible LY6E protein promotes HIV-1 infection. The Journal of Biological Chemistry, 292(11), 4674–4685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, X., et al. (2014). IFN-stimulated gene LY6E in monocytes regulates the CD14/TLR4 pathway but inadequately restrains the hyperactivation of monocytes during chronic HIV-1 infection. Journal of Immunology, 193(8), 4125–4136.

    Article  CAS  Google Scholar 

  37. Langford, M. B., et al. (2018). Deletion of the Syncytin A receptor Ly6e impairs syncytiotrophoblast fusion and placental morphogenesis causing embryonic lethality in mice. Scientific Reports, 8(1), 3961.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bacquin, A., et al. (2017). A cell fusion-based screening method identifies Glycosylphosphatidylinositol-anchored protein Ly6e as the receptor for mouse endogenous retroviral envelope Syncytin-A. Journal of Virology, 91(18), e00832-17.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liao, X. H., Xie, Z., & Guan, C. N. (2018). MiRNA-500a-3p inhibits cell proliferation and invasion by targeting lymphocyte antigen 6 complex locus K (LY6K) in human non-small cell lung cancer. Neoplasma, 65(5), 673–682.

    Article  CAS  PubMed  Google Scholar 

  40. Kong, H. K., Yoon, S., & Park, J. H. (2012). The regulatory mechanism of the LY6K gene expression in human breast cancer cells. The Journal of Biological Chemistry, 287(46), 38889–38900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Endo, S., et al. (2016). TEX101, a glycoprotein essential for sperm fertility, is required for stable expression of Ly6k on testicular germ cells. Scientific Reports, 6, 23616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geeta Upadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upadhyay, G. (2019). Emerging Role of Novel Biomarkers of Ly6 Gene Family in Pan Cancer. In: Rhim, J., Dritschilo, A., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 1164. Springer, Cham. https://doi.org/10.1007/978-3-030-22254-3_4

Download citation

Publish with us

Policies and ethics