Skip to main content

Mechanisms Underlying Metastatic Pancreatic Cancer

  • Chapter
  • First Online:
Human Cell Transformation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1164))

Abstract

Pancreatic ductal adenocarcinoma is an overwhelming fatal disease that often presents with overt metastases and ultimately causes the majority of cancer-associated deaths. The mechanisms underlying the metastatic cascade are complex, and research in recent years has begun to provide insights into the underlying drivers of this phenomenon. It has become clear that cancer cells, in particular pancreatic cancer cells, possess properties of plasticity involving bidirectional transition between epithelial and mesenchymal identities. Furthermore, recent work has begun to establish that there are distinct hybrid states between purely epithelial and purely mesenchymal states that cancer cells may reside, in order to thrive at different stages of carcinogenesis. We discuss how this plasticity is important for different phases of the metastatic cascade, from delamination to colonization, and how different epithelial–mesenchymal states may affect metastatic organotropism. In this review, we summarize the current understanding of pancreatic cancer cell plasticity and metastasis, and highlight current model systems that can be used to study these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: a Cancer Journal for Clinicians, 68(1), 7–30.

    Google Scholar 

  2. Ma, J., & Jemal, A. (2013). The rise and fall of cancer mortality in the USA: Why does pancreatic cancer not follow the trend? Future Oncology, 9(7), 917–919.

    Article  CAS  PubMed  Google Scholar 

  3. Rhim, A. D., et al. (2012). EMT and dissemination precede pancreatic tumor formation. Cell, 148(1-2), 349–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hingorani, S. R., et al. (2005). Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell, 7(5), 469–483.

    Article  CAS  PubMed  Google Scholar 

  5. Biankin, A. V., et al. (2012). Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 491(7424), 399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bardeesy, N., et al. (2006). Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes & Development, 20(22), 3130–3146.

    Article  CAS  Google Scholar 

  7. Ijichi, H., et al. (2006). Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes & Development, 20(22), 3147–3160.

    Article  CAS  Google Scholar 

  8. Izeradjene, K., et al. (2007). Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell, 11(3), 229–243.

    Article  CAS  PubMed  Google Scholar 

  9. Olive, K. P., et al. (2009). Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 324(5933), 1457–1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rhim, A. D., et al. (2014). Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell, 25(6), 735–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aguirre, A. J., et al. (2003). Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes & Development, 17(24), 3112–3126.

    Article  CAS  Google Scholar 

  12. Bardeesy, N., et al. (2006). Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 103(15), 5947–5952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Skoulidis, F., et al. (2010). Germline Brca2 heterozygosity promotes Kras(G12D) -driven carcinogenesis in a murine model of familial pancreatic cancer. Cancer Cell, 18(5), 499–509.

    Article  CAS  PubMed  Google Scholar 

  14. Shakya, R., et al. (2011). BRCA1 tumor suppression depends on BRCT phosphoprotein binding, but not its E3 ligase activity. Science, 334(6055), 525–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rowley, M., et al. (2011). Inactivation of Brca2 promotes Trp53-associated but inhibits KrasG12D-dependent pancreatic cancer development in mice. Gastroenterology, 140(4), 1303–1313.e1-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aiello, N. M., Rhim, A. D., & Stanger, B. Z. (2016). Orthotopic injection of pancreatic cancer cells. Cold Spring Harbor Protocols, 2016(1), pdb.prot078360.

    Article  PubMed  Google Scholar 

  17. Aiello, N. M., et al. (2016). Metastatic progression is associated with dynamic changes in the local microenvironment. Nature Communications, 7, 12819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nieto, M. A., et al. (2016). Emt: 2016. Cell, 166(1), 21–45.

    Article  CAS  PubMed  Google Scholar 

  19. Aiello, N. M., et al. (2018). EMT subtype influences epithelial plasticity and mode of cell migration. Developmental Cell, 45(6), 681–695.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ocana, O. H., et al. (2012). Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell, 22(6), 709–724.

    Article  CAS  PubMed  Google Scholar 

  21. Reichert, M., et al. (2013). The Prrx1 homeodomain transcription factor plays a central role in pancreatic regeneration and carcinogenesis. Genes & Development, 27(3), 288–300.

    Article  CAS  Google Scholar 

  22. Takano, S., et al. (2016). Prrx1 isoform switching regulates pancreatic cancer invasion and metastatic colonization. Genes & Development, 30(2), 233–247.

    Article  CAS  Google Scholar 

  23. Thiery, J. P., et al. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890.

    Article  CAS  PubMed  Google Scholar 

  24. Zheng, X., et al. (2015). Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature, 527(7579), 525–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paget, S. (1989). The distribution of secondary growths in cancer of the breast. 1889. Cancer and Metastasis Reviews, 8(2), 98–101.

    CAS  PubMed  Google Scholar 

  26. Data, S. R. (2018). Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) Research Data (1973–2015). National Cancer Institute, DCCPS, Surveillance Research Program, released April 2018, based on the November 2017 submission.

  27. Yamashita, K., et al. (2015). Survival impact of pulmonary metastasis as recurrence of pancreatic ductal adenocarcinoma. Digestive Surgery, 32(6), 464–471.

    Article  PubMed  Google Scholar 

  28. Decoster, C., et al. (2016). Heterogeneity of metastatic pancreatic adenocarcinoma: Lung metastasis show better prognosis than liver metastasis-a case control study. Oncotarget, 7(29), 45649–45655.

    Article  PubMed  Google Scholar 

  29. Azmi, A. S., Bao, B., & Sarkar, F. H. (2013). Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review. Cancer Metastasis Reviews, 32(3-4), 623–642.

    Article  CAS  PubMed  Google Scholar 

  30. Hoshino, A., et al. (2015). Tumour exosome integrins determine organotropic metastasis. Nature, 527(7578), 329–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grunwald, B., et al. (2016). Pancreatic premalignant lesions secrete tissue inhibitor of metalloproteinases-1, which activates hepatic stellate cells via CD63 signaling to create a premetastatic niche in the liver. Gastroenterology, 151(5), 1011–1024 e7.

    Article  PubMed  CAS  Google Scholar 

  32. Reichert, M., et al. (2018). Regulation of epithelial plasticity determines metastatic organotropism in pancreatic cancer. Developmental Cell, 45(6), 696–711.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Skrypek, N., et al. (2017). Epithelial-to-mesenchymal transition: Epigenetic reprogramming driving cellular plasticity. Trends in Genetics, 33(12), 943–959.

    Article  CAS  PubMed  Google Scholar 

  34. Bedi, U., et al. (2014). Epigenetic plasticity: A central regulator of epithelial-to-mesenchymal transition in cancer. Oncotarget, 5(8), 2016–2029.

    Article  PubMed  PubMed Central  Google Scholar 

  35. von Burstin, J., et al. (2009). E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology, 137(1), 361–71, 371 e1-5.

    Article  CAS  Google Scholar 

  36. Aghdassi, A., et al. (2012). Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut, 61(3), 439–448.

    Article  CAS  PubMed  Google Scholar 

  37. Meidhof, S., et al. (2015). ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Molecular Medicine, 7(6), 831–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hessmann, E., et al. (2017). Epigenetic treatment of pancreatic cancer: Is there a therapeutic perspective on the horizon? Gut, 66(1), 168–179.

    Article  CAS  PubMed  Google Scholar 

  39. Toll, A. D., et al. (2010). Implications of enhancer of zeste homologue 2 expression in pancreatic ductal adenocarcinoma. Human Pathology, 41(9), 1205–1209.

    Article  CAS  PubMed  Google Scholar 

  40. Ougolkov, A. V., Bilim, V. N., & Billadeau, D. D. (2008). Regulation of pancreatic tumor cell proliferation and chemoresistance by the histone methyltransferase enhancer of zeste homologue 2. Clinical Cancer Research, 14(21), 6790–6796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Avan, A., et al. (2012). Molecular mechanisms involved in the synergistic interaction of the EZH2 inhibitor 3-deazaneplanocin A with gemcitabine in pancreatic cancer cells. Molecular Cancer Therapeutics, 11(8), 1735–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Singh, S. K., et al. (2015). Antithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity. The EMBO Journal, 34(4), 517–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, C., et al. (2015). MicroRNA-200c overexpression plays an inhibitory role in human pancreatic cancer stem cells by regulating epithelial-mesenchymal transition. Minerva Medica, 106(4), 193–202.

    CAS  PubMed  Google Scholar 

  44. Bao, B., et al. (2011). Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Letters, 307(1), 26–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu, X., et al. (2016). MiR-200a suppresses the proliferation and metastasis in pancreatic ductal adenocarcinoma through downregulation of DEK gene. Translational Oncology, 9(1), 25–31.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhong, X., et al. (2016). Suppression of MicroRNA 200 family expression by oncogenic KRAS activation promotes cell survival and epithelial-mesenchymal transition in KRAS-driven cancer. Molecular and Cellular Biology, 36(21), 2742–2754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, Y., et al. (2009). Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Research, 69(16), 6704–6712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fidler, I. J. (1973). The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. European Journal of Cancer, 9(3), 223–227.

    Article  CAS  PubMed  Google Scholar 

  49. Liotta, L. A., Kleinerman, J., & Saidel, G. M. (1974). Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Research, 34(5), 997–1004.

    CAS  PubMed  Google Scholar 

  50. Thompson, S. C. (1974). The colony forming efficiency of single cells and cell aggregates from a spontaneous mouse mammary tumour using the lung colony assay. British Journal of Cancer, 30(4), 332–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liotta, L. A., Saidel, M. G., & Kleinerman, J. (1976). The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Research, 36(3), 889–894.

    CAS  PubMed  Google Scholar 

  52. Lione, A., & Bosmann, H. B. (1978). Quantitative relationship between volume of tumour cell units and their intravascular survival. British Journal of Cancer, 37(2), 248–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Melo, S. A., et al. (2015). Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature, 523(7559), 177–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aiello, N. M., et al. (2017). Upholding a role for EMT in pancreatic cancer metastasis. Nature, 547(7661), E7–E8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Rustgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pitarresi, J.R., Rustgi, A.K. (2019). Mechanisms Underlying Metastatic Pancreatic Cancer. In: Rhim, J., Dritschilo, A., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 1164. Springer, Cham. https://doi.org/10.1007/978-3-030-22254-3_1

Download citation

Publish with us

Policies and ethics