Advertisement

Assessing 50 Years of Mangrove Forest Loss Along the Pacific Coast of Ecuador: A Remote Sensing Synthesis

  • Stuart E. Hamilton
Chapter
Part of the Coastal Research Library book series (COASTALRL, volume 33)

Abstract

To assess the changes in landuse and landcover resulting from the shrimp farm expansion occurring in each of the study areas, a remote sensing analysis of each estuary in Ecuador is conducted. This remote sensing analysis documents mangrove forest landuse and landcover (LULC) change as well as shrimp farm LULC change that occurred in each of the estuaries. Also, the remote sensing analysis pinpoints the approximate time the LULC transition occurred and the exact location of these LULC changes. The remotely-sensed data has the required spatial, temporal, and radiometric resolutions to detect if shrimp farms directly displaced mangrove forest at the sub-estuary level. This remote sensing analysis can then be used in Chap.  5 to answer the critical question of how much aquaculture-driven LULC change has occurred at the local level since commercial shrimp farms arrived in each estuary in Ecuador. The primary earth observing system (EOS) used to conduct the LULC change analysis is the Landsat program as it has the required resolutions to achieve these stated goals. This chapter describes a repeatable and widely-applicable method based on remotely sensed data synthesis that can be applied to other locations or even other landocovers. All the input, processing, and output data used or generated are provided in an accompanying website.

Keywords

EOS Landsat Aster Rapid eye Remote sensing Topographic maps Air photos Map projections Land use Land cover Land use change Land cover change 

Supplementary material

470402_1_En_4_MOESM1_ESM.zip (1422.5 mb)
Dataverse (ZIP 1456629 kb)

References

  1. Abrams M, Hook S, Ramachandran B (2002) ASTER user handbook, version 2. Jet propulsion laboratory 4800:135Google Scholar
  2. Ball GH, Hall DJ (1965) ISODATA, a novel method of data analysis and pattern classification. Stanford Research Institute, Menlo ParkGoogle Scholar
  3. Barsi JA, Lee K, Kvaran G, Markham BL, Pedelty JA (2014) The spectral response of the Landsat-8 operational land imager. Remote Sens 6(10):10232–10251CrossRefGoogle Scholar
  4. Brunn A, Bahloul S, Hoffmann D, Anderson C (2016) Recent progress in in-flight radiometric calibration and validation of the RapidEye constellation of 5 multispectral remote SENSING satellites. In, Cham, 2016. Image and Video Technology – PSIVT 2015 Workshops Springer International Publishing, pp 273–284Google Scholar
  5. Chander G, Markham B (2003) Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Trans Geosci Remote Sens 41(11):2674–2677CrossRefGoogle Scholar
  6. ESRI (2018) How maximum likelihood classification works. ESRI. http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-maximum-likelihood-classification-works.htm. Accessed 12, 2018
  7. Hamilton SE, Castellanos-Galindo GA (2018) UAV derived, 6 cm resolution. GeoTIFF, RGB, Projected, GIS-ready raster dataset of Rio Preguicas Mangrove Stand, Maranhão State, BrazilGoogle Scholar
  8. Hamilton SE, Castellanos-Galindo GA, Millones-Mayer M, Chen M (2018) Remote sensing of mangrove forests: current techniques and existing databases. In: Makowski C, Finkl CW (eds) Threats to mangrove forests: hazards, vulnerability, and management, vol 25. Springer, Cham, pp 497–520.  https://doi.org/10.1007/978-3-319-73016-5_22 CrossRefGoogle Scholar
  9. Heumann BW (2011) Satellite remote sensing of mangrove forests: recent advances and future opportunities. Prog Phys Geogr 35(1):87–108CrossRefGoogle Scholar
  10. Irish RR (2000) Landsat 7 science data users handbook. National Aeronautics and Space Administration, Report 2000, pp 415–430Google Scholar
  11. Jensen JR (2005) Introductory digital image processing: a remote sensing perspective, Prentice Hall series in geographic information science, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  12. Jensen JR (2007) Remote sensing of the environment: an earth resource perspective, Prentice Hall series in geographic information science, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  13. Kuenzer C, Bluemel A, Gebhardt S, Quoc TV, Dech S (2011) Remote sensing of mangrove ecosystems: a review. Remote Sens 3(5):878–928CrossRefGoogle Scholar
  14. Masek JG, Vermote EF, Saleous NE, Wolfe R, Hall FG, Huemmrich KF, Gao F, Kutler J, Lim T-K (2006) A Landsat surface reflectance dataset for North America, 1990-2000. IEEE Geosci Remote Sens Lett 3(1):68–72CrossRefGoogle Scholar
  15. NASA, METI, AIST, Japan Spacesystems, U.S./Japan ASTER Science Team (2018) ASTER on-demand L2 surface reflectance VNIR and SWIR crosstalk-corrected, vol 2018. LP DAAC, Washington, DC.  https://doi.org/10.5067/ASTER/AST_07XT.003
  16. NIMA (2000) Department of defense world geodetic system 1984: its definition and relationships with local geodetic systems. 3rd, Amendment 1 edn. NIMA, BethesdaGoogle Scholar
  17. Otero V, Van De Kerchove R, Satyanarayana B, Martínez-Espinosa C, Fisol MAB, Ibrahim MRB, Sulong I, Mohd-Lokman H, Lucas R, Dahdouh-Guebas F (2018) Managing mangrove forests from the sky: forest inventory using field data and unmanned aerial vehicle (UAV) imagery in the Matang Mangrove Forest Reserve, peninsular Malaysia. For Ecol Manag 411:35–45CrossRefGoogle Scholar
  18. QGIS Development Team (2016) QGIS user manual: raster calculatorGoogle Scholar
  19. Richards JA, Richards J (1999) Remote sensing digital image analysis, vol 3. Springer, BerlinCrossRefGoogle Scholar
  20. Ruwaimana M, Satyanarayana B, Otero V, Muslim AM, Syafiq M, Ibrahim S, Raymaekers D, Koedam N, Dahdouh-Guebas F (2018) The advantages of using drones over space-borne imagery in the mapping of mangrove forests. PLoS One 13(7):e0200288CrossRefGoogle Scholar
  21. Tian J, Wang L, Li X, Gong H, Shi C, Zhong R, Liu X (2017) Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest. Int J Appl Earth Obs Geoinf 61:22–31CrossRefGoogle Scholar
  22. USGS (2018) Landsat 8 surface reflectance code (LASRC) product guide, vol 1. USGS, Sioux FallsGoogle Scholar
  23. USGS (2019) Landsat surface reflectance Level-2 science products support land surface change studies. USGS. https://landsat.usgs.gov/landsat-surface-reflectance-data-products. Accessed 12 Jan 2018
  24. USGS, US Dept. of Interior (2018) Landsat Missions. USGS. https://landsat.usgs.gov/. Accessed 12 Jan 2018
  25. Williams D (2009) Landsat-7 science data User’s handbook. National Aeronautics and Space Administration, p 186Google Scholar
  26. Woodcock CE, Allen R, Anderson M, Belward A, Bindschadler R, Cohen W, Gao F, Goward SN, Helder D, Helmer E (2008) Free access to Landsat imagery. Science 320(5879):1011–1011CrossRefGoogle Scholar
  27. Zanter K (2016) Landsat 8 (L8) data users handbook. Landsat Science Official Website Available online: https://landsat usgs gov/landsat-8-l8-data-users-handbook. Accessed 20 Jan 2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Stuart E. Hamilton
    • 1
  1. 1.Department of Geography and GeoscienceSalisbury UniversitySalisburyUSA

Personalised recommendations