Advertisement

Botany of Mangroves

  • Stuart E. Hamilton
Chapter
Part of the Coastal Research Library book series (COASTALRL, volume 33)

Abstract

Despite such harsh environmental conditions, mangroves have colonized the nearshore environment of much of the global tropical coastline. In doing so, mangrove forests have converted what is otherwise often barren coastlines into one of the most productive ecosystems on the planet. Measured regarding human livelihoods, carbon processing, fisheries support, erosion control, or biodiversity; mangrove forests are one of the most productive ecosystems on the planet, yet they mangrove forests are historically one of the most underappreciated and misunderstood land cover types. This chapter examines the botany of mangroves. Section 1.1 describes the biology of mangroves with a focus on those present in Ecuador. Section 1.2 examines the dominant Ecuadorian mangrove that is Rhizophora mangle which is currently undergoing a taxonomic reclassification to Rhizophora samoensis. Section 1.3 delineates the global and Ecuadorian distribution of mangrove species. Section 1.4 examines current and past estimates of mangrove forest area for both global mangrove forests and Ecuadorian mangrove forests. Section 1.5 examines the role of mangrove forests in supporting the wider ecosystem that they inhabit. Section 1.6 focusses upon the role of mangrove forests in supporting wild fish fisheries and Sect 1.7 on the manner in which mangrove forests provided important livelihood options and other goods and services to the people that reside nearby. Section 1.8 elucidates on the role of mangrove forests in mitigating global climate change and recent advances in this critical arena.

Keywords

Mangrove forests Mangroves Rhizophora mangle Rhizophora samoensis Blue carbon Mangrove economy Mangrove forest cover Mangrove anomaly 

Supplementary material

470402_1_En_1_MOESM1_ESM.zip (4.3 mb)
Dataverse (ZIP 390857 kb)

References

  1. Acosta JRS (2018) Chain of supply of the ecuadorian black shell and its risk of extinction. Janus. http://janus.ec/cadena-de-suministro-de-la-concha-negra-ecuatoriana-y-su-riesgo-de-extincion/. Accessed 17 Dec 2018
  2. Aizpuru M, Achard F, Blasco F (2000) Global assessment of cover change of the mangrove forests using satellite imagery at medium to high resolution, EEC Research Project No. 15017-1999-05 FIED ISP FR. Joint Research Center, IspraGoogle Scholar
  3. Alvarez-León R, Garcia-Hansen I (2003) Biodiversity associated with mangroves in Colombia. ISME/GLOMIS 3(1):1–2Google Scholar
  4. Armitage D (2002) Socio-institutional dynamics and the political ecology of mangrove forest conservation in Central Sulawesi, Indonesia. Glob Environ Chang 12(3):203–217.  https://doi.org/10.1016/S0959-3780(02)00023-7 CrossRefGoogle Scholar
  5. Arriaga L, Montaño M, Vásconez J (1999) Integrated management perspectives of the Bahia de Caráquez Zone and Chone River Estuary, Ecuador. Ocean Coast Manag 42(2–4):229–241.  https://doi.org/10.1016/s0964-5691(98)00055-6 CrossRefGoogle Scholar
  6. Bakhuizen van den Brink R (1921) Revisio generis Avicenniae. Bull Jard Bot Buitenz 3:199–226Google Scholar
  7. Batagoda BMS (2003) The economic valuation of alternative uses of mangrove forests in Sri Lanka. UNEP/GPA, The HagueGoogle Scholar
  8. Blaber SJM (2007) Mangroves and fishes: issues of diversity, dependence, and dogma. Bull Mar Sci 80(3):457–472Google Scholar
  9. Blanchard J, Prado G (1995) Natural regeneration of rhizophora mangle in strip clearcuts in Northwest Ecuador. Biotropica 27(2):160–167CrossRefGoogle Scholar
  10. Blanco JF (2018) Mangroves species richness: feedback. Research Gate, Berlin.  https://doi.org/10.13140/RG.2.2.22958.15680 CrossRefGoogle Scholar
  11. Bodero A (1993) Mangrove ecosystems of Ecuador. In: Lacerda LD (ed) Conservation and sustainable utilization of mangrove forests in Latin America and Africa regions. ISME, Okinawa, pp 55–74Google Scholar
  12. Borda CA, Cruz R (2004) Pesca artesanal de bivalvos (Anadara tuberculosa y A. similis) y su relación con eventos ambientales. Pacífico colombiano. Rev Investig Mar 25(3):197–208Google Scholar
  13. Boyd CE, Clay JW (1998) Shrimp aquaculture and the environment. Sci Am 278(June):58–65CrossRefGoogle Scholar
  14. Bunting P, Rosenqvist A, Lucas R, Rebelo L-M, Hilarides L, Thomas N, Hardy A, Itoh T, Shimada M, Finlayson C (2018) The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens 10(10):1669CrossRefGoogle Scholar
  15. Butler RA (2018) Mongabay: calculating deforestation figures for the Amazon. Mongabay. https://data.mongabay.com/general_tables.htm, https://data.mongabay.com/deforestation.htm, https://rainforests.mongabay.com/amazon/deforestation_calculations.html. Accessed 26 Jan 2017
  16. Cárdenas H, Fuentes Á, González F, Quesada S, Gil J, Gallo J (2018) Conectividad genética de poblaciones naturales de la piangua (Anadara tuberculosa y Anadara similis) en la costa Pacífica colombiana estimada a partir de marcadores moleculares microsatélites [recurso electrónico]Google Scholar
  17. Chong VC (2007) Mangroves-fisheries linkages in the Malaysian perspective. Bull Mar Sci 80(3):755–772Google Scholar
  18. CLIRSEN (1987) Estudio Multitemporal de los Manglares, Camaroneras y Areas Salinas de la Costa Ecuatoriana. vol 1. Centro De Levantamientos Integrados De Recursos Naturales Por Sensores Remotos, QuitoGoogle Scholar
  19. CLIRSEN (2007) Actualizacion Del Estudio Multitemporal de Manglares, Camaroneras Y Areas Salinas En Las Costa Continental Ecuatoriana Al Ano 2006. vol 1. Centro De Levantamientos Integrados De Recursos Naturales Por Sensores Remotos, QuitoGoogle Scholar
  20. Collins S (2010) Mangrove destruction and shrimp aquaculture in ecuador: a focus on property right enforcement. University of Ottawa, OttawaGoogle Scholar
  21. Conchedda G, Lambin EF, Mayaux P (2011) Between land and sea: livelihoods and environmental changes in mangrove ecosystems of senegal. Ann Assoc Am Geogr 101(6):1259–1284.  https://doi.org/10.1080/00045608.2011.579534 CrossRefGoogle Scholar
  22. Costanza R, d’Arge R, de Groot R, Farberk S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260.  https://doi.org/10.1038/387253a0 CrossRefGoogle Scholar
  23. Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Glob Environ Chang 26:152–158.  https://doi.org/10.1016/j.gloenvcha.2014.04.002 CrossRefGoogle Scholar
  24. Doat J (1977) The calorific value of tropical woods. Bois et Forets des Tropiques 172:33–55Google Scholar
  25. Dodson CH, Gentry AH (1991) Biological extinction in Western Ecuador. Ann Mo Bot Gard 78(2):273–295CrossRefGoogle Scholar
  26. Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4(5):293–297CrossRefGoogle Scholar
  27. Duke N (2018) On the difference between R. Mangle and R. Samoensis. Personal Communication 18th December 2018Google Scholar
  28. Ebarvia M, Corazón M (1999) Total economic valuation: coastal and marine resources in the straits of Malacca. MPP-EAS Technical Report No. 24. PEMSEA Technical Report. GEF/UNDP/IMO Regional Programme for the Prevention and Management of Marine Pollution in the East Asian Seas (MPP-EAS)/Partnerships in Environmental Management for the Seas of East Asia (PEMSEA), Quezon City, PhillipinesGoogle Scholar
  29. Ellison JC, Duke N (2015) Rhizophora samoensis. The IUCN red list of threatened species version 2018-2. IUCN. Accessed 12 Dec 2018Google Scholar
  30. Ellison AM, Farnsworth EJ (1996) Anthropogenic disturbance of caribbean mangrove ecosystems: past impacts, present trends, and future predictions. Biotropica 28(4):549–565.  https://doi.org/10.2307/2389096 CrossRefGoogle Scholar
  31. Ellison AM, Farnsworth EJ, Merkt RE (1999) Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Glob Ecol Biogeogr 8(2):95–115CrossRefGoogle Scholar
  32. Ellison A, Farnsworth E, Moore G (2015) Rhizophora mangle. The IUCN red list of threatened species version 2018-2. IUCN. Accessed 12 Dec 2018Google Scholar
  33. Fisher P, Spalding M (1993) Protected areas with mangrove habitat. vol draft report. World Conservation Centre, CambridgeGoogle Scholar
  34. Flater D (2018) Tide table: Guayaquil, Ecuador. http://tides.mobilegeographics.com/calendar/year/2324.html. Accessed 24 Nov 2018
  35. Frias-Torres S, Barroso P, Eklund A-M, Schull J, Serafy JE (2007) Activity patterns of three juvenile goliath grouper, Epinephelus Itajara, in a mangrove nursery. Bull Mar Sci 80:587–594Google Scholar
  36. Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20(1):154–159.  https://doi.org/10.1111/j.1466-8238.2010.00584.x CrossRefGoogle Scholar
  37. Gore R (1977) The tree nobody liked. Natl Geogr 155:669–689Google Scholar
  38. Graindorge D, Calahorrano A, Charvis P, Collot JY, Bethoux N (2004) Deep structures of the Ecuador convergent margin and the Carnegie Ridge, possible consequence on great earthquakes recurrence interval. Geophys Res Lett 31(4):L04603CrossRefGoogle Scholar
  39. Granek EF, Frasier K (2007) The impacts of red mangrove (Rhizophora Mangle) deforestation on zooplankton communities in Bocas Del Toro, Panama. Bull Mar Sci 80(3):905–914Google Scholar
  40. Groombridge B (1992) Global biodiversity: status of the earth’s living resources. WCMC, LondonCrossRefGoogle Scholar
  41. Guevara JM, Granda V (2009) El manglar es vida. Ministerio de Cultura, QuitoGoogle Scholar
  42. Hamilton SE (2013) Assessing the role of commercial aquaculture in displacing mangrove forest. Bull Mar Sci 89(2):585–601.  https://doi.org/10.5343/bms.2012.1069 CrossRefGoogle Scholar
  43. Hamilton SE, Casey D (2016) Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob Ecol Biogeogr 25(6):729–738.  https://doi.org/10.1111/geb.12449 CrossRefGoogle Scholar
  44. Hamilton SE, Collins S (2013) Las Respuestas a Los Medios De Subsistencia Deforestación De Los Manglares en Las Provincias Del Norte De Ecuador. Bosque 34(2):143–153.  https://doi.org/10.4067/S0717-92002013000200003 CrossRefGoogle Scholar
  45. Hamilton SE, Friess DA (2018) Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat Clim Chang 8(3):240–244.  https://doi.org/10.1038/s41558-018-0090-4 CrossRefGoogle Scholar
  46. Hamilton SE, Lovette J (2015) Ecuador’s mangrove forest carbon stocks: a spatiotemporal analysis of living carbon holdings and their depletion since the advent of commercial aquaculture. PLoS One 10(3):e0118880.  https://doi.org/10.1371/journal.pone.0118880 CrossRefGoogle Scholar
  47. Hamilton SE, Stankwitz C (2012) Examining the relationship between international aid and mangrove deforestation in coastal Ecuador from 1970 to 2006. J Land Use Sci 7(2):177–202.  https://doi.org/10.1080/1747423x.2010.550694 CrossRefGoogle Scholar
  48. Hamilton SE, Lovette JP, Borbor-Cordova MJ, Millones M (2017) The carbon holdings of Northern Ecuador’s mangrove forests. Ann Am Assoc Geogr 107(1):54–71.  https://doi.org/10.1080/24694452.2016.1226160 CrossRefGoogle Scholar
  49. Hamilton SE, Castellanos-Galindo GA, Millones-Mayer M, Chen M (2018) Remote sensing of mangrove forests: current techniques and existing databases. In: Makowski C, Finkl CW (eds) Threats to mangrove forests: hazards, vulnerability, and management, vol 25. Springer International Publishing, Cham, pp 497–520.  https://doi.org/10.1007/978-3-319-73016-5_22 CrossRefGoogle Scholar
  50. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853.  https://doi.org/10.1126/science.1244693 CrossRefGoogle Scholar
  51. Harcourt CS, Sayer JA (1996) The conservation atlas of tropical forests: the Americas. MacMillan Reference Books, New YorkGoogle Scholar
  52. He Z, Zhang Z, Guo W, Zhang Y, Zhou R, Shi S (2015) De novo assembly of coding sequences of the mangrove palm (Nypa fruticans) using RNA-Seq and discovery of whole-genome duplications in the ancestor of palms. PLoS One 10(12):e0145385CrossRefGoogle Scholar
  53. Hogarth PJ (1999) The biology of mangroves. Biology of habitats. Oxford University Press, New YorkGoogle Scholar
  54. Hogarth PJ (2007) The biology of mangroves and seagrasses. Biology of habitats. Oxford University Press, OxfordCrossRefGoogle Scholar
  55. Hogarth PJ (2015) The biology of mangroves and seagrasses. Oxford University Press, OxfordCrossRefGoogle Scholar
  56. Hutchison J, Spalding M, zu Ermgassen P (2014) The role of mangroves in fisheries enhancement. The Nature Conservancy and Wetlands International, Cambridge, p 54Google Scholar
  57. IFAS (2009) Coastal wetland plants. University of Florida. http://fmel.ifas.ufl.edu/habitat/cono.shtml. Accessed 30 Jan 2009
  58. IMF (2017) World economic outlook database. World economic and financial surveys. International Monetary Fund, Washington, DCGoogle Scholar
  59. ITTO, ISME (1993) Mangrove ecosystems: technical reports. International Society for Mangrove Ecosystems (ISME), International Tropical Timber Organization (ITTO), Japan International Association for Mangroves (JIAM), OkinawaGoogle Scholar
  60. IUCN SSC (2010) IUCN red list categories and criteria: version 3.1Google Scholar
  61. IUCN, UNEP (2016) The World Database on Protected Areas (WDPA). www.protectedplanet.net. Accessed 01 Dec 2018
  62. Kathiresan K, Qasim SZ (2005) Biodiversity of mangrove ecosystems. Hindustan Pub. Corp, New DelhiGoogle Scholar
  63. Kelvin K, Lim P, Murphy DH, Morgany T, Sivasothi N, Peter K, Ng L, Soong BC, Hugh TW, Tan KS, Tan T, Tan K (2001) A guide to mangroves of Singapore. Raffles Museum of Biodiversity Research, The National University of Singapore & The Singapore Science Centre. Accessed 01 Apr 2008Google Scholar
  64. Koenig CC, Coleman FC, Eklund A-M, Schull J, Ueland J (2007) Mangroves as essential nursery habitat for goliath grouper (Epinephelus itajara). Bull Mar Sci 80(3):567–586Google Scholar
  65. Labastida E (1995) Diagnóstico Económico de las Actividades Relacionadas con la Zona de Manglar con énfasis en las Unidades de Producción Camaronera. In: Inefan E (ed) Estudio de las Alternativas de Manejo del Área Comprendida entre los Ríos Cayapas y Mataje, Provincia de Esmeraldas, vol 1. EcoCiencia & INEFAN, Quito, p Appendix 9Google Scholar
  66. López-Angarita J, Roberts CM, Tilley A, Hawkins JP, Cooke RG (2016) Mangroves and people: lessons from a history of use and abuse in four Latin American countries. For Ecol Manag 368:151–162CrossRefGoogle Scholar
  67. Lugendo BR, Nagelkerken I, Kruitwagen G, van der Velde G, Mgaya YD (2007) Relative importance of mangroves as feeding habitats for fishes: a comparison between mangrove habitats with different settings. Bull Mar Sci 80(3):497–512Google Scholar
  68. Lugo AE, Snedaker SC (1974) The ecology of mangroves. Annu Rev Ecol Syst 5:39–64CrossRefGoogle Scholar
  69. Macnae W (1968) A general account of the fauna and flora of mangrove swamps and forests in the Indo-West Pacific region. Adv Mar Biol 6:73–270CrossRefGoogle Scholar
  70. Macnae W, Kalk M (1962) The ecology of the mangrove Swamps at Inhaca Island, Mocambique. J Ecol 50(1):19–34CrossRefGoogle Scholar
  71. Madsen JE, Mix R, Balslev H (2001) Flora of Puna Island: Plant resources on a neotropical Island. Aarhus University Press, LangelandsgadeGoogle Scholar
  72. Mejía-Rentería JC, Castellanos-Galindo GA, Cantera-Kintz JR, Hamilton SE (2018) A comparison of Colombian Pacific mangrove extent estimations: implications for the conservation of a unique Neotropical tidal forest. Estuar Coast Shelf Sci 212:233–240.  https://doi.org/10.1016/j.ecss.2018.07.020 CrossRefGoogle Scholar
  73. Moreno J, Mora E (2009) La pesquería artesanal del recurso concha Andara tuberculosa y A. similis en la costa ecuatoriana durante el 2004Google Scholar
  74. Nagelkerken I (2007) Are non-estuarine mangroves connected to coral reefs through fish migration? Bull Mar Sci 80(3):595–607Google Scholar
  75. Naylor RL, Goldburg RJ, Mooney H, Beveridge M, Clay J, Folke C, Kautsky N, Lubchenco J, Primavera J, Williams M (1998) Nature’s subsidies to shrimp and salmon farming. Science 282(5390):883–884CrossRefGoogle Scholar
  76. O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL, Collins LS, de Queiroz A, Farris DW, Norris RD, Stallard RF, Woodburne MO, Aguilera O, Aubry M-P, Berggren WA, Budd AF, Cozzuol MA, Coppard SE, Duque-Caro H, Finnegan S, Gasparini GM, Grossman EL, Johnson KG, Keigwin LD, Knowlton N, Leigh EG, Leonard-Pingel JS, Marko PB, Pyenson ND, Rachello-Dolmen PG, Soibelzon E, Soibelzon L, Todd JA, Vermeij GJ, Jackson JBC (2016) Formation of the Isthmus of Panama. Sci Adv 2(8):e1600883.  https://doi.org/10.1126/sciadv.1600883 CrossRefGoogle Scholar
  77. Ocampo-Thomason P (2006) Mangroves, people and cockles: impacts of the shrimp-farming industry on mangrove communities in Esmeraldas Province, Ecuador. In: Hoanh CT, Tuong TP, Gowing JW, Hardy B (eds) Environment and livelihoods in tropical coastal zones: managing agriculture-fishery-aquaculture conflicts (Comprehensive assessment of water management in agriculture series), vol 2. Oxford University Press, London, pp 140–153Google Scholar
  78. Odum WE, Heald EJ (1972) Trophic analyses of an estuarine mangrove community. Bull Mar Sci 22(3):671–738Google Scholar
  79. Ong JE (2002) The hidden costs of mangrove services: use of mangroves for shrimp aquaculture. Paper presented at the International Science Roundtable for the Media, Bali, Indonesia, June 04, 2002Google Scholar
  80. Palomares MLD, Pauly D (2018) Sealifebase: Anadara tuberculosa v10.2018. Vancover.Google Scholar
  81. Parks PJ, Bonifaz M (1994) Nonsustainable use of renewable resources: mangrove deforestation and mariculture in Ecuador. Mar Resour Econ 9(1):1–18CrossRefGoogle Scholar
  82. Plaziat J-C, Cavagnetto C, Koeniguer J-C, Baltzer F (2001) History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record. Wetl Ecol Manag 9(3):161–180CrossRefGoogle Scholar
  83. Rosati I, Prosperi P, Latham J, Kainuma M (2008) World atlas of mangroves. In: Sessa R (ed) Terrestrial observations of our planet, GTOS 50, vol 1. Food and Agricultural Organization of the United Nations, Rome, pp 30–31Google Scholar
  84. Saenger P, Hegerl EJ, Davie JDS (1983) Global Status of mangrove ecosystems, Commission on Ecology Papers No. 3, vol 3. World Conservation Union (IUCN), GlandGoogle Scholar
  85. SeaLifeBase: Anadara tuberculosa V10.2018 (2018) https://www.sealifebase.ca/summary/Anadara-tuberculosa.html https://www.sealifebase.ca/. Accessed 10 2018
  86. Shervette VR, Aguirre WE, Blacio E, Cevallos R, Gonzalez M, Pozo F, Gelwick F (2007) Fish communities of a disturbed mangrove wetland and an adjacent Tidal River in Palmar, Ecuador. Estuar Coast Shelf Sci 72(1–2):115–128CrossRefGoogle Scholar
  87. Siikamäki J, Sanchirico JN, Jardine SL (2012) Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc Natl Acad Sci Early Ed 109:14369–14374.  https://doi.org/10.1073/pnas.1200519109 CrossRefGoogle Scholar
  88. Snedaker SC (1986) Traditional uses of south american mangrove resources and the socio-economic effect of ecosystem changes. In: Kunstadter P, Bird ECF, Sabhasri S (eds) Workshop on man in the mangroves, vol 1. United Nations University, Tokyo, pp 102–112Google Scholar
  89. Spalding M, Blasco F, Field C (eds) (1997) World mangrove atlas. International Society for Mangrove Ecosystems, OkinawaGoogle Scholar
  90. Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. Earthscan, LondonCrossRefGoogle Scholar
  91. Spalding M, McIvor A, Tonneijck F, Tol S, Eijk PV (2014) Mangroves for coastal defence. Wetlands Internat, WageningenGoogle Scholar
  92. Taillardat P, Friess DA, Lupascu M (2018) Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol Lett 14(10):20180251CrossRefGoogle Scholar
  93. Tomascik T (1997) The ecology of the Indonesian seas. Oxford University Press, OxfordGoogle Scholar
  94. Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge/CambridgeshireGoogle Scholar
  95. Twilley RR, Cárdenas W, Rivera-Monroy VH, Espinoza J, Suescum R, Armijos MM, Solórzano L (2001) The gulf of guayaquil and the Guayas River Estuary, Ecuador. In: Seeliger U, Kjerfve B (eds) Coastal marine ecosystems of Latin America. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 245–263.  https://doi.org/10.1007/978-3-662-04482-7_18 CrossRefGoogle Scholar
  96. UN FAO (1981) Tropical forest resources assessment project: forest resources of tropical asia. FAO, RomeGoogle Scholar
  97. UN FAO (2004) Mangrove forest management guidelines, FAO Forestry Paper 117, vol 117. FAO, Rome. ISBN 92-5-103445-1Google Scholar
  98. UN FAO (2007) The world’s mangroves 1980–2005, FAO Forestry Paper, vol 153. FAO, RomeGoogle Scholar
  99. UN FAO Fisheries and Aquaculture Department (2017) FishStat Plus – Universal software for fishery statistical time series. FAO, RomeGoogle Scholar
  100. UN FAO Fisheries and Aquaculture Department (2018) The State of world fisheries and aquaculture 2018—Meeting the sustainable development goals. The state of world fisheries and aquaculture. UN FAO Fisheries and Aquaculture Department, RomeGoogle Scholar
  101. Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51(10):807–815.  https://doi.org/10.1641/0006-3568(2001)051[0807,MFOOTW]2.0.CO;2 CrossRefGoogle Scholar
  102. Veach K (1996) Gender, resource use, conservation attitudes and local participation in mangrove fishing villages in Northern Esmeraldas Province, Ecuador. University of Florida, GainesvilleGoogle Scholar
  103. Wang L, Mu M, Li X, Lin P, Wang W (2011) Differentiation between true mangroves and mangrove associates based on leaf traits and salt contents. J Plant Ecol 4(4):292–301.  https://doi.org/10.1093/jpe/rtq008 CrossRefGoogle Scholar
  104. Warne K (2007) Mangroves: forests of the tide. Natl Geogr 211:88–117Google Scholar
  105. Yamanaka MD, Ogino S-Y, Wu P-M, Jun-Ichi H, Mori S, Matsumoto J, Syamsudin F (2018) Maritime continent coastlines controlling earth’s climate. Prog Earth Planet Sci 5(1):21.  https://doi.org/10.1186/s40645-018-0174-9 CrossRefGoogle Scholar
  106. Yáñez-Espinosa L, Flores J (2011) A review of sea-level rise effect on mangrove forest species: anatomical and morphological modifications. In: Casalegno S (ed) Global warming impacts-case studies on the economy, human health, and on urban and natural environments. InTech Europe, Rijeka, Croatia. ISBN: 978-953-307-785-7Google Scholar
  107. Zhang Z, He Z, Xu S, Li X, Guo W, Yang Y, Zhong C, Zhou R, Shi S (2016) Transcriptome analyses provide insights into the phylogeny and adaptive evolution of the mangrove fern genus Acrostichum. Sci Rep 6:35634CrossRefGoogle Scholar
  108. Zorn J (1796) Afbeeldingen der artseny-gewassen met derzelver nederduitsche en latynsche beschryvingen. In: Oskamp L, Houttuyn M, Krauss JC (eds) Images of the physician’s crops with their traditional and Latin namesGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Stuart E. Hamilton
    • 1
  1. 1.Department of Geography and GeoscienceSalisbury UniversitySalisburyUSA

Personalised recommendations