Skip to main content

The Gaps Between the Dimensions of Normal Hausdorff Spaces

  • Chapter
  • First Online:
  • 671 Accesses

Part of the book series: Atlantis Studies in Mathematics ((ATLANTISSM,volume 7))

Abstract

Let \(\mathcal {D}(l, m, n)\) denote the class of all spaces X with ind X = l, \(\dim X = m\) and Ind X = n. Recall that (1) \(\dim X = 0\) iff Ind X = 0 for any space X, (2) ind X ≤Ind X if X is either T 1 or regular, and (3) \(\dim X \leq {\mathrm {Ind}}\, X\) provided X is a normal space. In this chapter we show that \(\mathcal {D}(l, m, n)\) contains a normal Hausdorff space for any triple of integers (l, m, n) that is not ruled out by (1), (2) or (3). We construct a Hausdorff, separable, first countable, ω 1-compact, countably paracompact and normal member of \(\mathcal {D}(l, m, n)\), whenever 0 ≤ l ≤ n and 0 < m ≤ n. The construction will make use of both van Douwen’s technique and Fedorčuk’s method of resolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See Chap. 25.

  2. 2.

    See Chap. 29.

References

  1. M.G. Charalambous, Spaces with noncoinciding dimensions. Proc. Amer. Math. Soc. 94, 507–515 (1985)

    Article  MathSciNet  Google Scholar 

  2. M.G. Charalambous, The gaps between the dimensions of countably paracompact spaces. Top. Appl. 155, 2216–2220 (2008)

    Article  MathSciNet  Google Scholar 

  3. J.S. Kulesza, New properties of Mrówka’s space νμ 0. Proc. Amer. Math. Soc. 133, 899–904 (2004)

    Article  Google Scholar 

  4. I.K. Lifanov, On the dimension of normal spaces. Soviet Math. Dokl. 14, 383–387 (1973)

    MATH  Google Scholar 

  5. S. Mrówka, Small inductive dimension of completions of metric spaces. Proc. Amer. Math. Soc. 125, 1545–1554 (1997)

    Article  MathSciNet  Google Scholar 

  6. S. Mrówka, Small inductive dimension of completions of metric spaces II. Proc. Amer. Math. Soc. 128, 1247–1256 (1999)

    Article  MathSciNet  Google Scholar 

  7. K. Nagami, A normal space Z with \(\mathop {\mathrm {ind}}\nolimits Z =0\), \(\dim Z= 1\), \(\mathop {\mathrm {Ind}}\nolimits Z = 2\). J. Math. Soc. Japan 18, 158–165 (1966)

    Google Scholar 

  8. K. Nagami, Dimension Theory, Pure and Appl. Math., vol. 37 (Academic Press, New York and London, 1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charalambous, M.G. (2019). The Gaps Between the Dimensions of Normal Hausdorff Spaces. In: Dimension Theory. Atlantis Studies in Mathematics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-22232-1_32

Download citation

Publish with us

Policies and ethics