Skip to main content

Inverse Limits and N-Compact Spaces

  • Chapter
  • First Online:
Dimension Theory

Part of the book series: Atlantis Studies in Mathematics ((ATLANTISSM,volume 7))

  • 675 Accesses

Abstract

A directed set is a non-empty set S equipped with a reflexive and transitive relation ≤ such that for any r, s ∈ S, there is t ∈ S with r ≤ t and s ≤ t. An inverse system \((X_s, f^s_r; S)\) of spaces consists of a directed set S, a space X s for each s ∈ S and bonding maps \(f^s_r: X_s\to X_r\), for r, s ∈ S with r ≤ s, such that \(f^s_s\) is the identity on X s and \(f^t_r=f^s_r \circ f^t_s\) whenever r ≤ s ≤ t. Evidently, the equality \(f^t_r=f^s_r \circ f^t_s\) need only be checked for r < s < t.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.G. Charalambous, The dimension of inverse limits. Proc. Amer. Math. Soc. 58, 289–295 (1976)

    Article  MathSciNet  Google Scholar 

  2. K.P. Chew, A characterization of N–compact spaces. Proc. Amer. Math. Soc. 26, 679–682 (1970)

    MathSciNet  MATH  Google Scholar 

  3. H. Cook, B. Fitzpatrik, Jr., Inverse limits of perfectly normal spaces. Proc. Amer. Math. Soc. 19, 189–192 (1968)

    Article  MathSciNet  Google Scholar 

  4. R. Engelking, General Topology (Heldermann Verlag, Berlin, 1989)

    MATH  Google Scholar 

  5. R. Engelking, S. Mrówka, On E-compact spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 6, 429–436 (1958)

    MATH  Google Scholar 

  6. H. Freudenthal, Entwicklungen von Räumen und ihren Gruppen. Comp. Math. 4, 145–234 (1937)

    MATH  Google Scholar 

  7. L. Gillman, M. Jerison, Rings of Continuous Functions (Van Nostrand, New York, 1960)

    Book  Google Scholar 

  8. H. Herrlich, \(\frak {E}\)–kompakte Räume. II. Math. Z. 96, 228–255 (1967)

    Google Scholar 

  9. E. Hewitt, Rings of real valued continuous functions, I. Trans. Amer. Math. Soc. 64, 45–99 (1948)

    Article  MathSciNet  Google Scholar 

  10. J.R. Isbell, Uniform Spaces, Math. Surveys no. 12 (Amer. Math. Soc., Providence, 1964)

    Google Scholar 

  11. K. Morita, On the dimension of the product of Tychonoff spaces. General Topology Appl. 3, 123–133 (1973)

    Article  MathSciNet  Google Scholar 

  12. S. Mrówka, On universal spaces. Bull. Acad. Polon. Sci. Cl III 4, 479–481 (1956)

    MathSciNet  MATH  Google Scholar 

  13. S. Mrówka, Recent results on E–compact spaces, in TOPO 72, Proc. Second Pittsburgh International Conference, Lecture Notes Mat., vol. 378 (Springer, Berlin, 1974)

    Google Scholar 

  14. S. Mrówka, N–Compactness, Metrizability and Covering Dimension, Rings of continuous functions (Marcel Dekker Inc., New York, 1995), pp. 247–275

    Google Scholar 

  15. A. Mysior, Two easy examples of zero–dimensional spaces. Proc. Amer. Math. Soc. 92, 615–617 (1984)

    MathSciNet  MATH  Google Scholar 

  16. K. Nagami, Dimension Theory, Pure and Appl. Math., vol. 37 (Academic Press, New York and London, 1970)

    Google Scholar 

  17. P. Nyikos, Not every 0–dimensional realcompact space is N–compact. Bull. Amer. Math. Soc. 77, 392–396 (1971)

    Article  MathSciNet  Google Scholar 

  18. P. Nyikos, Prabir Roy’s example is not N–compact. General Topology Appl. 3, 197–210 (1973)

    Article  MathSciNet  Google Scholar 

  19. E. Pol, Some examples in the dimension theory of Tychonoff spaces. Bull. Acad. Polon. Sci., Math. 24, 893–897 (1976)

    Google Scholar 

  20. P. Roy, Failure of equivalence of dimension concepts for metric spaces. Bull. Amer. Math. Soc. 68, 609–613 (1962)

    Article  MathSciNet  Google Scholar 

  21. A.H. Stone, Paracompactness and product spaces. Bull. Amer. Math. Soc. 54, 977–982 (1948)

    Article  MathSciNet  Google Scholar 

  22. W.C. Waterhouse, An empty inverse limit. Proc. Amer. Math. Soc. 16, 618 (1972)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charalambous, M.G. (2019). Inverse Limits and N-Compact Spaces. In: Dimension Theory. Atlantis Studies in Mathematics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-22232-1_16

Download citation

Publish with us

Policies and ethics