Ambient Intelligence Model for Monitoring, Alerting and Adaptively Recommending Patient’s Health-Care Agenda Based on User Profile

  • Manuel F. J. PatiñoEmail author
  • Demetrio A. OvalleEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11582)


Currently, healthcare is a crucial issue for the entire population, especially for individuals who suffer from a chronic disease such as hypertension or diabetes. However, this care is carried out in medical centers, limiting the scope of health professionals. In fact, some monitoring, early warning processes, and health supporting that are not presently performed, could be carried out at the patient’s location. The aim of this paper is to integrate WSN, ambient intelligence, multi-agent systems, and ontologies, in order to develop an ambient intelligence model that provides alerts, personalized recommendations, and adaptive health-care agendas. Personalized agendas based on chronic patient profiles offer appropriate physical activity, personalized food diet, and specific activities in order to control stress levels. For the validation of the proposed model, a prototype was constructed and applied to a case study considering several chronic patients. The results demonstrate the effectiveness of the proposed health-care ambient intelligence multi-agent model.


Ambient intelligence Healthcare Multi-agent systems Adaptive systems Ontologies Wireless sensor networks 



This research was developed by GIDIA (Artificial Intelligence Development Research Group) of the National University of Colombia, Medellin branch.


  1. 1.
    Burney, S., Mahmood, N., Abbas, Z.: Information and communication technology in healthcare management systems: prospects for developing countries. Int. J. Comput. Appl. 4(2), 27–32 (2010). Scholar
  2. 2.
    Oliveira, R., Frutuoso, S., Machado, J., Santos, M., Portela, F., Abelha, A.: Step towards m-Health in pediatrics. Proc. Technol. 9, 1192–1200 (2013). Scholar
  3. 3.
    Silva, B., Rodrigues, J.: A novel cooperation strategy for mobile health applications. IEEE J. Sel. Areas Commun. 31(9), 28–36 (2013). Scholar
  4. 4.
    Free, C., Phillips, G., Watson, L., et al.: The effectiveness of mobile-health technologies to improve health care service delivery processes: a systematic review and meta-analysis. PLoS Med. 10(1) (2013).
  5. 5.
    Pereira, A., Marinsa, F., Rodrigues, B., et al.: Improving quality of medical service with mobile health software. Proc. Comput. Sci. 63, 292–299 (2015). Scholar
  6. 6.
    Haya, P., Montoso, G., Alamán., X.: Un mecanismo de resolución de conflictos en entornos de inteligencia ambiental. In: Actas del Simposio de Computación Ubicua e Inteligencia Ambiental, UCAmI, pp. 11–18 (2005)Google Scholar
  7. 7.
    Venturini, V.: Sistema Multi-Agente basado en Contexto, Localización y Reputación para dominios de inteligencia Ambiental. Tesis de Doctorado en Ciencia y Tecnología Informática, Universidad Carlos III de Madrid – Escuela Politécnica Superior (2012)Google Scholar
  8. 8.
    Aarts, E., Marzano, S. (eds.): The New Everyday: Views on Ambient Intelligence. 010 Publishers, Rotterdam (2003)Google Scholar
  9. 9.
    Restrepo, S.: Modelo de Inteligencia Ambiental basado en la integración de Redes de Sensores Inalámbricas y Agentes Inteligentes. Tesis de maestría, Universidad Nacional de Colombia - Sede Medellín (2012)Google Scholar
  10. 10.
    Tramullas, J., Sánchez-Casabón, A.-I., Garrido-Picazo, P.: An evaluation based on the digital library user: an experience with greenstone software. Proc. - Soc. Behav. Sci. 73, 167–174 (2013). Scholar
  11. 11.
    Gaeta, M., Orciuoli, F., Paolozzi, S., Salerno, S.: Ontology extraction for knowledge reuse: the e-learning perspective. IEEE Trans. Syst. Man Cybern. - Part A: Syst. Hum. 41(4), 798–809 (2011)CrossRefGoogle Scholar
  12. 12.
    Mas, A.: Agentes Software y Sistemas MultiAgente: Conceptos, Arquitecturas y Aplicaciones. Pearson-Prentice-Hall (2004)Google Scholar
  13. 13.
  14. 14.
    OMS: Información general sobre la hipertensión en el mundo, una enfermedad que mata en silencio, una crisis de salud pública mundial. Organización mundial de la salud (2013)Google Scholar
  15. 15.
    Sarmar, N., Gao, P., Seshasai., S., et al.: Diabetes mellitus, fasting blood glucose concentration, and risk of vascular diseade: a collaborative meta-analysis of 102 prospective studies, Emerging Risk Factors Colladoration. The lancet (2010)Google Scholar
  16. 16.
    Corchado, J.M., Bajo, J., de Paz, Y., Tapia, D.I.: Intelligent environment for monitoring Alzheimer patients, agent technology for healthcare. Decis. Supp. Syst. 44(2), 382–396 (2008). Scholar
  17. 17.
    Agreda, J.A., Gonzalez, E.: Ambient intelligence based multi-agent system for attend elderly people. In: Proceedings of the 9th Computing Colombian Conference (9CCC) IEEE Conferences (2014)Google Scholar
  18. 18.
    Restrepo, S.E., Pezoa, J.E., Ovalle, D.A.: An Adaptive architecture for ambient intelligence based on meta-modeling, smart agents, and wireless sensor networks. IEEE Latin Am. Trans. 12(8), 1508–1514 (2014)CrossRefGoogle Scholar
  19. 19.
    Roda, C., Rodríguez, A., Lopez-Jaquero, V., Navarro, E., González, P.: A multi-agent system for acquired brain injury rehabilitation in ambient intelligence environments. Neurocomputing 231, 11–18 (2017).
  20. 20.
    Su, C., Peng, C.: Multi-agent ontology-based Web 2.0 platform for medical rehabilitation. Expert Syst. Appl. 39, 10311–10323 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad Nacional de ColombiaSede MedellínColombia

Personalised recommendations