Advertisement

Discrete-Event Simulation for Performance Evaluation and Improvement of Gynecology Outpatient Departments: A Case Study in the Public Sector

  • Miguel Ortiz-BarriosEmail author
  • Pedro Lopez-Meza
  • Sally McClean
  • Giselle Polifroni-Avendaño
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11582)

Abstract

Gynecology outpatient units are in charge of treating different gynecological diseases such as tumorous, cancer, urinary incontinence, gynecological pain, and abnormal discharge. On-time attention is thus needed to avoid severe complications, patient dissatisfaction, and elevated healthcare costs. There is then an urgent need for assessing whether the gynecology outpatient departments are cost-effective and what interventions are required for improving clinical outcomes. Despite this context, the studies directly concentrating on diagnosis and improvement of these departments are widely limited. To address these concerns, this paper aims to provide a Discrete-event Simulation (DES) modelling framework to help healthcare managers gain a better understanding of the gynecology outpatient services and evaluate improvement strategies. First, the patient journey through the gynecology outpatient service is mapped. To correctly represent the system uncertainty, collected data is then processed through input analysis. Third, the data is used to model and simulate the real gynecology outpatient unit. This model is later validated to determine whether it is statistically equivalent to the real system. After this, using performance metrics derived from the simulation model, the gynecology outpatient department is analyzed to identify potential improvements. We finally pretest potential interventions to define their viability during implementation. A case study of a mixed-patient type environment in a public gynecology outpatient unit is presented to verify the applicability of the proposed methodology. The results evidenced that appointment lead times could be efficiently reduced using this approach.

Keywords

Discrete-event simulation (DES) Healthcare Appointment lead-time Gynecology Outpatient care 

References

  1. 1.
    Zhang, X.: Application of discrete event simulation in health care: a systematic review. BMC Health Serv. Res. 18(1), 687 (2018)CrossRefGoogle Scholar
  2. 2.
    Brailsford, S.C., Harper, P.R., Patel, B., Pitt, M.: An analysis of the academic literature on simulation and modelling in health care. J. Simul. 3(3), 130–140 (2009)CrossRefGoogle Scholar
  3. 3.
    Elkhuizen, S.G., Das, S.F., Bakker, P.J.M., Hontelez, J.A.M.: Using computer simulation to reduce access time for outpatient departments. BMJ Qual. Saf. 16(5), 382–386 (2007)CrossRefGoogle Scholar
  4. 4.
    Harper, P.R., Gamlin, H.M.: Reduced outpatient waiting times with improved appointment scheduling: a simulation modelling approach. OR Spectr. 25(2), 207–222 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Santibáñez, P., Chow, V.S., French, J., Puterman, M.L., Tyldesley, S.: Reducing patient wait times and improving resource utilization at British Columbia Cancer Agency’s ambulatory care unit through simulation. Health Care Manag. Sci. 12(4), 392 (2009)CrossRefGoogle Scholar
  6. 6.
    Wijewickrama, A.K.A.: Simulation analysis for reducing queues in mixed-patients’ outpatient department. Int. J. Simul. Model. 5(2), 56–68 (2006)CrossRefGoogle Scholar
  7. 7.
    Gillespie, J., McClean, S., Garg, L., Barton, M., Scotney, B., Fullerton, K.: A multi-phase DES modelling framework for patient-centred care. J. Oper. Res. Soc. 67(10), 1239–1249 (2016)CrossRefGoogle Scholar
  8. 8.
    Ortiz, M.A., McClean, S., Nugent, C.D., Castillo, A.: Reducing appointment lead-time in an outpatient department of gynecology and obstetrics through discrete-event simulation: a case study. In: García, C.R., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds.) UCAmI 2016. LNCS, vol. 10069, pp. 274–285. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48746-5_28CrossRefGoogle Scholar
  9. 9.
    Congreso de la República de Colombia: Law 1751 (2015). Por medio de la cual se regula el derecho fundamental a la salud y se dictan otras disposiciones, 16 February 2015. http://www.secretariasenado.gov.co/senado/basedoc/ley_1751_2015.html#26
  10. 10.
    Constitución Política de Colombia (1991). http://www.secretariasenado.gov.co/index.php/constitucion-politica
  11. 11.
    Congreso de la República de Colombia: Law 100 (1993). Por la cual se crea el sistema de seguridad social integral y se dictan otras disposiciones, 23 December 1993. http://www.secretariasenado.gov.co/senado/basedoc/ley_0100_1993.html#T%C3%8DTULO%20PRELIMIN
  12. 12.
    Ministerio de Salud y Protección Social: Decree 780 (2016). Por medio del cual se expide el Decreto Único Reglamentario del Sector Salud y Protección Social, 6 May 2016. https://www.minsalud.gov.co/Normatividad_Nuevo/Decreto%200780%20de%202016.pdf
  13. 13.
    Ministerio de Salud y Protección Social: Resolution 256 (2016). Por la cual se dictan disposiciones en relación con el Sistema de Información para la Calidad y se establecen los indicadores para el monitoreo de la calidad en salud, 5 February 2016. http://www.acreditacionensalud.org.co/sua/Documents/Resoluci%C3%B3n%200256%20de%20201620SinfCalidad.pdf
  14. 14.
    Karnon, J., Stahl, J., Brennan, A., Caro, J.J., Mar, J., Möller, J.: Modeling using discrete event simulation: a report of the ISPOR-SMDM modeling good research practices task force–4. Med. Decis. Making 32(5), 701–711 (2012)CrossRefGoogle Scholar
  15. 15.
    Izquierdo, N.V., Lezama, O.B.P., Dorta, R.G., Viloria, A., Deras, I., Hernández-Fernández, L.: Fuzzy logic applied to the performance evaluation. Honduran coffee sector case. In: Tan, Y., Shi, Y., Tang, Q. (eds.) ICSI 2018. LNCS, vol. 10942, pp. 164–173. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93818-9_16CrossRefGoogle Scholar
  16. 16.
    Günal, M.M., Pidd, M.: Discrete event simulation for performance modelling in health care: a review of the literature. J. Simul. 4(1), 42–51 (2010)CrossRefGoogle Scholar
  17. 17.
    Ortiz Barrios, M., Felizzola Jiménez, H., Nieto Isaza, S.: Comparative analysis between ANP and ANP- DEMATEL for six sigma project selection process in a healthcare provider. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 413–416. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13105-4_62CrossRefGoogle Scholar
  18. 18.
    Ortiz, M.A., López-Meza, P.: Using computer simulation to improve patient flow at an outpatient internal medicine department. In: García, C.R., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds.) UCAmI 2016. LNCS, vol. 10069, pp. 294–299. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48746-5_30CrossRefGoogle Scholar
  19. 19.
    Ortíz-Barrios, M., Jimenez-Delgado, G., De Avila-Villalobos, J.: A computer simulation approach to reduce appointment lead-time in outpatient perinatology departments: a case study in a maternal-child hospital. In: Siuly, S., et al. (eds.) HIS 2017. LNCS, vol. 10594, pp. 32–39. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69182-4_4CrossRefGoogle Scholar
  20. 20.
    Mohiuddin, S., et al.: Patient flow within UK emergency departments: a systematic review of the use of computer simulation modelling methods. BMJ Open 7(5), e015007 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Miguel Ortiz-Barrios
    • 1
    Email author
  • Pedro Lopez-Meza
    • 2
  • Sally McClean
    • 3
  • Giselle Polifroni-Avendaño
    • 4
  1. 1.Department of Industrial Management, Agroindustry and OperationsUniversidad de La Costa CUCBarranquillaColombia
  2. 2.Department of Industrial Process EngineeringInstitución Universitaria ITSABarranquillaColombia
  3. 3.School of ComputingUniversity of UlsterLondonderryUK
  4. 4.Department of General ManagementSofast Ingeniería S.A.S.BarranquillaColombia

Personalised recommendations