Advertisement

Follow Me:

The Impact of Opinion Majorities in Social Networks and the Role of Digital Maturity
  • Patrick HalbachEmail author
  • Laura Burbach
  • Martina Ziefle
  • André Calero-Valdez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11582)

Abstract

The emergence of social media platforms like Facebook and their success in connecting people changed not only the way people interact and socialize, but also allows for new forms of spreading opinion. The obstacles to share opinions and reaching many known and unknown others, decreased noticeably, bringing up an abundance of opinions on diverse topics. We investigated the interplay of the spiral of silence and the bandwagon effect in online contexts and performed a web survey with 163 participants, confronting them with opinion majorities in user comments on four diverse topics. Our results show, that both phenomena reoccur in online contexts. However, they were not traceable to our examined user factors. This indicates, that a large proportion of users could fall for online bandwagon effects and the spiral of silence.

Keywords

Spiral of silence Bandwagon effect Opinion change Opinion majorities Digital maturity Human factors 

Notes

Acknowledgements

The authors would like to thank Nils Plettenberg and Johannes Nakayama for his help in improving this article. We would like to thank Satvika Anantha, Kira Borowsky, Marcel Derichs, Tanem Dönmez, Marlien Rubner, Svenja Wimmers for their support in this study. This research was supported by the Digital Society research program funded by the Ministry of Culture and Science of the German State of North Rhine-Westphalia.

References

  1. 1.
    Boulianne, S.: Social media use and participation: a meta-analysis of current research. 18(5), 524–538.  https://doi.org/10.1080/1369118X.2015.1008542. ISSN 1369-118X, 1468-4462
  2. 2.
    Chun, J.W., Lee, M.J.: When does individuals willingness to speak out increase on social media? Perceived social support and perceived power/control. Comput. Hum. Behav. 74, 120–129 (2017).  https://doi.org/10.1016/j.chb.2017.04.010. https://linkinghub.elsevier.com/retrieve/pii/S0747563217302480. ISSN 0747-5632CrossRefGoogle Scholar
  3. 3.
    Del Vicario, M., et al.: Mapping social dynamics on Facebook: the Brexit debate. Soc. Netw. 50, 6–16 (2017).  https://doi.org/10.1016/j.socnet.2017.02.002. https://linkinghub.elsevier.com/retrieve/pii/S0378873316304166. ISSN 0378-8733CrossRefGoogle Scholar
  4. 4.
    Gearhart, S., Zhang, W.: “Was it something i said?” “No, it was something you posted!” A study of the spiral of silence theory in social media contexts. Cyberpsychol. Behav. Soc. Netw. 18(4), 208–213 (2015).  https://doi.org/10.1089/cyber.2014.0443. ISSN 2152-2715
  5. 5.
    Ho, S.S., McLeod, D.M.: Social-psychological influences on opinion expression in face-to-face and computer-mediated communication. Commun. Res. 35(2), 190–207 (2008).  https://doi.org/10.1177/0093650207313159. ISSN 0093-6502CrossRefGoogle Scholar
  6. 6.
    Kim, M.: Facebook’s spiral of silence and participation: the role of political expression on facebook and partisan strength in political participation. Cyberpsychol. Behav. Soc. Netw. 19(12), 696–702 (2016).  https://doi.org/10.1089/cyber.2016.0137. ISSN 2152-2715CrossRefGoogle Scholar
  7. 7.
    Kwon, K.H., Moon, S.l., Stefanone, M.A.: Unspeaking on Facebook? Testing network effects on self-censorship of political expressions in social network sites. Qual. Quan. 49(4), 1417–1435 (2015).  https://doi.org/10.1007/s11135-014-0078-8
  8. 8.
    Lee, E.J.: That’s not the way it is: how user-generated comments on the news affect perceived media bias. J. Comput.-Mediat. Commun. 18(1), 32–45 (2012).  https://doi.org/10.1111/j.1083-6101.2012.01597.x. https://academic.oup.com/jcmc/article/18/1/32-45/4067495. ISSN 1083-6101CrossRefGoogle Scholar
  9. 9.
    Lee, M.J., Chun, J.W.: Reading others’ comments and public opinion poll results on social media: social judgment and spiral of empowerment. Comput. Hum. Behav. 65, 479–487 (2016).  https://doi.org/10.1016/j.chb.2016.09.007. https://linkinghub.elsevier.com/retrieve/pii/S074756321630629X. ISSN 0747-5632CrossRefGoogle Scholar
  10. 10.
    Lee, S., et al.: Understanding the majority opinion formation process in online environments: an exploratory approach to Facebook. Inf. Process. Manag. 54(6), 1115–1128 (2018).  https://doi.org/10.1016/J.IPM.2018.08.002. https://www.sciencedirect.com/science/article/abs/pii/S0306457317307367?via%3Dihub. ISSN 0306-4573CrossRefGoogle Scholar
  11. 11.
    Leibenstein, H.: Bandwagon, snob, and veblen effects in the theory of consumers’ demand. Q. J. Econ. 64(2), 183 (1950).  https://doi.org/10.2307/1882692. https://academic.oup.com/qje/article-lookup/doi/10.2307/1882692. ISSN 0033-5533CrossRefGoogle Scholar
  12. 12.
    Van der Meer, T.W.G., Hakhverdian, A., Aaldering, L.: Off the fence, onto the bandwagon? A Large-Scale survey experiment on effect of real-life poll outcomes on subsequent vote intentions. Int. J. Pub. Opin. Res. 28(1), 46–72 (2016).  https://doi.org/10.1093/ijpor/edu041. ISSN 0954-2892CrossRefGoogle Scholar
  13. 13.
    Morton, R.B., et al.: Exit polls, turnout, and bandwagon voting: evidence from a natural experiment. Eur. Econ. Rev. 77, 65–81 (2015).  https://doi.org/10.1016/j.euroecorev.2015.03.012. https://linkinghub.elsevier.com/retrieve/pii/S0014292115000483. ISSN 0014-2921CrossRefGoogle Scholar
  14. 14.
    Neubaum, G., Krämer, N.C.: Monitoring the opinion of the crowd: psychological mechanisms underlying public opinion perceptions on social media. Media Psychol. 20(3), 502–531 (2017).  https://doi.org/10.1080/15213269.2016.1211539. ISSN 1521-3269CrossRefGoogle Scholar
  15. 15.
    Noelle-Neumann, E.: The spiral of silence a theory of public opinion. J. Commun. 24(2), 43–51 (1974).  https://doi.org/10.1111/j.1460-2466.1974.tb00367.x. https://academic.oup.com/joc/article/24/2/43-51/4553587. ISSN 0021-9916CrossRefGoogle Scholar
  16. 16.
    Oeldorf-Hirsch, A., Sundar, S.S.: Posting, commenting, and tagging: effects of sharing news stories on Facebook. Comput. Hum. Behav. 44, 240–249 (2015).  https://doi.org/10.1016/j.chb.2014.11.024. https://linkinghub.elsevier.com/retrieve/pii/S0747563214006232. ISSN 0747-5632CrossRefGoogle Scholar
  17. 17.
    Porten-Cheé, P., Eilders, C.: Spiral of silence online: how online communication affects opinion climate perception and opinion expression regarding the climate change debate. Stud. Commun. Sci. 15(1), 143–150 (2015).  https://doi.org/10.1016/J.SCOMS.2015.03.002. https://www.sciencedirect.com/science/article/pii/S1424489615000211?via%3Dihub. ISSN 1424-4896CrossRefGoogle Scholar
  18. 18.
    Purcell, K., et al.: Understanding the participatory news consumer (2010)Google Scholar
  19. 19.
    Schulz, A., Roessler, P.: The spiral of silence and the internet: selection of online content and the perception of the public opinion climate in computer-mediated Communication Environments. Int. J. Pub. Opin. Res. 24(3), 346–367 (2012).  https://doi.org/10.1093/ijpor/eds022. ISSN 0954-2892, 1471-6909CrossRefGoogle Scholar
  20. 20.
    Shao, C., et al.: The spread of low-credibility content by social bots. Nat. Commun. 9(1), 4787 (2018).  https://doi.org/10.1038/s41467-018-06930-7. ISSN 2041-1723CrossRefGoogle Scholar
  21. 21.
    Sundar, S.S., Nass, C.: Conceptualizing sources in online news. J. Commun. 51(1), 52–72 (2001).  https://doi.org/10.1111/j.1460-2466.2001.tb02872.x. https://academic.oup.com/joc/article/51/1/52-72/4110134. ISSN 0021-9916CrossRefGoogle Scholar
  22. 22.
    Sundar, S.S.: The MAIN model: a heuristic approach to understanding technology effects on credibility. In: Digital Media Youth Credibility, pp. 73–100 (2008)Google Scholar
  23. 23.
    Sundar, S.S., Knobloch-Westerwick, S., Hastall, M.R.: News cues: information scent and cognitive heuristics. J. Am. Soc. Inf. Sci. Technol. 58(3), 366–378 (2007).  https://doi.org/10.1002/asi.20511. ISSN 1532-2882CrossRefGoogle Scholar
  24. 24.
    Waddell, T.F.: What does the crowd think? How online comments and popularity metrics affect news credibility and issue importance. New Media Soc. 20(8), 3068–3083 (2018).  https://doi.org/10.1177/1461444817742905. ISSN 1461-4448CrossRefGoogle Scholar
  25. 25.
    Waddell, T.F.: The authentic (and angry) audience. Digit. Journal. 1–18 (2018).  https://doi.org/10.1080/21670811.2018.1490656. ISSN 2167-0811
  26. 26.
    Zech, C.E.: Leibenstein’s bandwagon effect as applied to voting. Public Choice 21(1), 117–122 (1975).  https://doi.org/10.1007/BF01705954. ISSN 0048-5829CrossRefGoogle Scholar
  27. 27.
    Zerback, T., Fawzi, N.: Can online exemplars trigger a spiral of silence? Examining the effects of exemplar opinions on perceptions of public opinion and speaking out. New Media Soc. 19(7), 1034–1051 (2017).  https://doi.org/10.1177/1461444815625942. ISSN 1461-4448CrossRefGoogle Scholar
  28. 28.
    de Zúñiga, H., Jung, N., Valenzuela, S.: Social media use for news and individual’s social capital, civic engagement and political participation. J. Comput. Mediat. Commun. 17(3), 319–336 (2012).  https://doi.org/10.1111/j.1083-6101.2012.01574.x. https://academic.oup.com/jcmc/article/17/3/319-336/4067682. ISSN 1083-6101CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Patrick Halbach
    • 1
    Email author
  • Laura Burbach
    • 1
  • Martina Ziefle
    • 1
  • André Calero-Valdez
    • 1
  1. 1.Human-Computer Interaction CenterRWTH Aachen UniversityAachenGermany

Personalised recommendations